Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Gene ; 697: 213-226, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-30772522

RESUMO

Strabismus refers to the misalignment of the eyes and occurs in 2-4% of individuals. The low-resolution label "strabismus" covers a range of heterogeneous defects, which makes it challenging to unravel this condition. Consequently a coherent understanding of the causes is lacking. Here, we attempt to gain a better understanding of the underlying genetics by combining gene curation, diverse bioinformatic analyses (including gene ontology, pathway mapping, expression and network-based methods) and literature review. Through a phenotype-based curation process, we identify high-confidence and permissive sets of 54 and 233 genes potentially involved in strabismus. These genes can be grouped into 10 modules that together span a heterogeneous set of biological and molecular functions, and can be linked to clinical sub-phenotypes. Multiple lines of evidence associate retina and cerebellum biology with the strabismus genes. We further highlight a potential role of the Ras-MAPK pathway. Independently, sets of 11 genes and 15 loci tied to strabismus with definitive genetic basis have been compiled from the literature. We identify strabismus candidate genes for 5 of the 15 reported loci (CHD7; SLC9A6; COL18A1, COL6A2; FRY, BRCA2, SPG20; PARK2). Finally, we synthesize a Strabismus Candidate Gene Collection, which together with our curated gene sets will serve as a resource for future research. The results of this informatics study support the heterogeneity and complexity of strabismus and point to specific biological pathways and brain regions for future focus.


Assuntos
Estrabismo/genética , Biologia Computacional/métodos , Curadoria de Dados/métodos , Ontologia Genética , Redes Reguladoras de Genes/genética , Genes ras/genética , Humanos , Sistema de Sinalização das MAP Quinases/genética , Transdução de Sinais/genética , Estrabismo/fisiopatologia , Transcriptoma/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/fisiologia
2.
Brain ; 139(Pt 3): 674-91, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26700687

RESUMO

Congenital myopathies are a clinically and genetically heterogeneous group of muscle disorders characterized by congenital or early-onset hypotonia and muscle weakness, and specific pathological features on muscle biopsy. The phenotype ranges from foetal akinesia resulting in in utero or neonatal mortality, to milder disorders that are not life-limiting. Over the past decade, more than 20 new congenital myopathy genes have been identified. Most encode proteins involved in muscle contraction; however, mutations in ion channel-encoding genes are increasingly being recognized as a cause of this group of disorders. SCN4A encodes the α-subunit of the skeletal muscle voltage-gated sodium channel (Nav1.4). This channel is essential for the generation and propagation of the muscle action potential crucial to muscle contraction. Dominant SCN4A gain-of-function mutations are a well-established cause of myotonia and periodic paralysis. Using whole exome sequencing, we identified homozygous or compound heterozygous SCN4A mutations in a cohort of 11 individuals from six unrelated kindreds with congenital myopathy. Affected members developed in utero- or neonatal-onset muscle weakness of variable severity. In seven cases, severe muscle weakness resulted in death during the third trimester or shortly after birth. The remaining four cases had marked congenital or neonatal-onset hypotonia and weakness associated with mild-to-moderate facial and neck weakness, significant neonatal-onset respiratory and swallowing difficulties and childhood-onset spinal deformities. All four surviving cohort members experienced clinical improvement in the first decade of life. Muscle biopsies showed myopathic features including fibre size variability, presence of fibrofatty tissue of varying severity, without specific structural abnormalities. Electrophysiology suggested a myopathic process, without myotonia. In vitro functional assessment in HEK293 cells of the impact of the identified SCN4A mutations showed loss-of-function of the mutant Nav1.4 channels. All, apart from one, of the mutations either caused fully non-functional channels, or resulted in a reduced channel activity. Each of the affected cases carried at least one full loss-of-function mutation. In five out of six families, a second loss-of-function mutation was present on the trans allele. These functional results provide convincing evidence for the pathogenicity of the identified mutations and suggest that different degrees of loss-of-function in mutant Nav1.4 channels are associated with attenuation of the skeletal muscle action potential amplitude to a level insufficient to support normal muscle function. The results demonstrate that recessive loss-of-function SCN4A mutations should be considered in patients with a congenital myopathy.


Assuntos
Hipocinesia/diagnóstico , Hipocinesia/genética , Mutação/genética , Miopatias Congênitas Estruturais/diagnóstico , Miopatias Congênitas Estruturais/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Feminino , Células HEK293 , Humanos , Recém-Nascido , Masculino , Linhagem , Índice de Gravidade de Doença , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA