Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 44(3): 596-609, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36085523

RESUMO

Promotion of hepatic glycogen synthesis and inhibition of hepatic glucose production are effective strategies for controlling hyperglycemia in type 2 diabetes mellitus (T2DM), but agents with both properties were limited. Herein we report coronarin A, a natural compound isolated from rhizomes of Hedychium gardnerianum, which simultaneously stimulates glycogen synthesis and suppresses gluconeogenesis in rat primary hepatocytes. We showed that coronarin A (3, 10 µM) dose-dependently stimulated glycogen synthesis accompanied by increased Akt and GSK3ß phosphorylation in rat primary hepatocytes. Pretreatment with Akt inhibitor MK-2206 (2 µM) or PI3K inhibitor LY294002 (10 µM) blocked coronarin A-induced glycogen synthesis. Meanwhile, coronarin A (10 µM) significantly suppressed gluconeogenesis accompanied by increased phosphorylation of MEK, ERK1/2, ß-catenin and increased the gene expression of TCF7L2 in rat primary hepatocytes. Pretreatment with ß-catenin inhibitor IWR-1-endo (10 µM) or ERK inhibitor SCH772984 (1 µM) abolished the coronarin A-suppressed gluconeogenesis. More importantly, we revealed that coronarin A activated PI3K/Akt/GSK3ß and ERK/Wnt/ß-catenin signaling via regulation of a key upstream molecule IRS1. Coronarin A (10, 30 µM) decreased the phosphorylation of mTOR and S6K1, the downstream target of mTORC1, which further inhibited the serine phosphorylation of IRS1, and subsequently increased the tyrosine phosphorylation of IRS1. In type 2 diabetic ob/ob mice, chronic administration of coronarin A significantly reduced the non-fasting and fasting blood glucose levels and improved glucose tolerance, accompanied by the inhibited hepatic mTOR/S6K1 signaling and activated IRS1 along with enhanced PI3K/Akt/GSK3ß and ERK/Wnt/ß-catenin pathways. These results demonstrate the anti-hyperglycemic effect of coronarin A with a novel mechanism by inhibiting mTORC1/S6K1 to increase IRS1 activity, and highlighted coronarin A as a valuable lead compound for the treatment of T2DM.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Camundongos , Ratos , Animais , Gluconeogênese , Glicogênio Hepático/metabolismo , beta Catenina/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Insulina/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Glucose/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Homeostase , Fosforilação
2.
Bioorg Med Chem ; 43: 116280, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34256254

RESUMO

The farnesoid X receptor (FXR) is a promising therapeutic target for nonalcoholic steatohepatitis (NASH) and other bile acid related diseases because it plays a critical role in fibrosis, inflammation and bile acid homeostasis. Obeticholic acid (OCA), a FXR agonist which was synthesized from chenodeoxycholic acid, showed desirable curative effects in clinical trials. However, the pruritus which was the main side effect of OCA limited its further applications in NASH. Although pruritus was also observed in the clinical trials of non-steroidal FXR agonists, the proportion of patients with pruritus was much smaller than that of OCA. Thus, we decided to develop non-steroidal FXR agonists and discovered a series of novel FXR agonists which were synthesized from GW4064 by replacing the stilbene group with ketoxime ether. Encouragingly, in the following biological tests, our target compounds 13j and 13z not only showed potent FXR agonistic activities in vitro, but also effectively promoted the expression of target genes in vivo. More importantly, in the pharmacokinetic experiments, compounds 13j and 13z displayed high liver/blood ratio characteristics which were helpful to reduce the potential side effects which were caused by prolonged systemic activation of FXR. In summary, our compounds were good choices for the development of non-steroidal FXR agonists and were deserved further investigation.


Assuntos
Descoberta de Drogas , Éteres/farmacologia , Fígado/química , Oximas/farmacologia , Receptores Citoplasmáticos e Nucleares/agonistas , Administração Oral , Relação Dose-Resposta a Droga , Éteres/administração & dosagem , Éteres/química , Humanos , Fígado/metabolismo , Estrutura Molecular , Oximas/administração & dosagem , Oximas/química , Relação Estrutura-Atividade
3.
Metabolism ; 99: 45-56, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31295453

RESUMO

BACKGROUND AND PURPOSE: TGR5 plays an important role in many physiological processes. However, the functions of TGR5 in the regulation of the glucose metabolism and insulin sensitivity in the skeletal muscles have not been fully elucidated. We synthesized MN6 as a potent and selective TGR5 agonist. Here, the effect of MN6 on insulin resistance in skeletal muscles was evaluated in diet-induced obese (DIO) mice and C2C12 myotubes, and the underlying mechanisms were explored. METHODS: The activation of MN6 on human and mouse TGR5 was evaluated by a cAMP assay in HEK293 cell lines stable expressing hTGR5/CRE or mTGR5/CRE cells. GLP-1 secretion was measured in NCI-H716 cells and CD1 mice. The acute and chronic effects of MN6 on regulating metabolic abnormalities were observed in ob/ob and DIO mice. 2-deoxyglucose uptake was examined in isolated skeletal muscles. Akt phosphorylation, glucose uptake and glycogen synthesis were examined to assess the effects of MN6 on palmitate-induced insulin resistance in C2C12 myotubes. RESULTS: MN6 potently activated human and mouse TGR5 with EC50 values of 15.9 and 17.9 nmol/L, respectively, and stimulated GLP-1 secretion in NCI-H716 cells and CD1 mice. A single oral dose of MN6 significantly decreased the blood glucose levels in ob/ob mice. Treatment with MN6 for 15 days reduced the fasting blood glucose and HbA1c levels in ob/ob mice. MN6 improved glucose and insulin tolerance and enhanced the insulin-stimulated glucose uptake of skeletal muscles in DIO mice. The palmitate-induced impairment of insulin-stimulated Akt phosphorylation, glucose uptake and glycogen synthesis in C2C12 myotubes could be prevented by MN6. The effect of MN6 on palmitate-impaired insulin-stimulated Akt phosphorylation was abolished by siRNA-mediated knockdown of TGR5 or by the inhibition of adenylate cyclase or protein kinase A, suggesting that this effect is dependent on the activation of TGR5 and the cAMP/PKA pathway. CONCLUSIONS: Our study identified that a TGR5 agonist could ameliorate insulin resistance by the cAMP/PKA pathway in skeletal muscles; this uncovered a new effect of the TGR5 agonist on regulating the glucose metabolism and insulin sensitivity in skeletal muscles and further strengthened its potential value for the treatment of type 2 diabetes.


Assuntos
Ciclopropanos/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Resistência à Insulina , Músculo Esquelético/efeitos dos fármacos , Piridinas/uso terapêutico , Quinoxalinas/uso terapêutico , Receptores Acoplados a Proteínas G/agonistas , Animais , Diabetes Mellitus Experimental/metabolismo , Dieta Hiperlipídica , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Células HEK293 , Homeostase , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo
4.
Acta Pharmacol Sin ; 37(10): 1359-1369, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27264313

RESUMO

AIM: TGR5 agonists stimulate intestinal glucagon-like peptide-1 (GLP-1) release, but systemic exposure causes unwanted side effects, such as gallbladder filling. In the present study, linagliptin, a DPP-4 inhibitor with a large molecular weight and polarity, and MN6, a previously described TGR5 agonist, were linked to produce OL3, a novel low-absorbed TGR5 agonist with reduced side-effects and dual function in lowering blood glucose by activation of TGR5 and inhibition of DPP-4. METHODS: TGR5 activation was assayed in HEK293 cells stably expressing human or mouse TGR5 and a CRE-driven luciferase gene. DPP-4 inhibition was assessed based on the rate of hydrolysis of a surrogate substrate. GLP-1 secretion was measured in human enteroendocrine NCI-H716 cells. OL3 permeability was tested in Caco-2 cells. Acute glucose-lowering effects of OL3 were evaluated in ICR and diabetic ob/ob mice. RESULTS: OL3 activated human and mouse TGR5 with an EC50 of 86.24 and 17.36 nmol/L, respectively, and stimulated GLP-1 secretion in human enteroendocrine NCI-H716 cells (3-30 µmol/L). OL3 inhibited human and mouse DPP-4 with IC50 values of 18.44 and 69.98 µmol/L, respectively. Low permeability of OL3 was observed in Caco-2 cells. In ICR mice treated orally with OL3 (150 mg/kg), the serum OL3 concentration was 101.10 ng/mL at 1 h, and decreased to 13.38 ng/mL at 5.5 h post dose, confirming the low absorption of OL3 in vivo. In ICR mice and ob/ob mice, oral administration of OL3 significantly lowered the blood glucose levels, which was a synergic effect of activating TGR5 that stimulated GLP-1 secretion in the intestine and inhibiting DPP-4 that cleaved GLP-1 in the plasma. In ICR mice, oral administration of OL3 did not cause gallbladder filling. CONCLUSION: OL3 is a low-absorbed TGR5 agonist that lowers blood glucose without inducing gallbladder filling. This study presents a new strategy in the development of potent TGR5 agonists in treating type 2 diabetes, which target to the intestine to avoid systemic side effects.


Assuntos
Glicemia/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Hipoglicemiantes/farmacologia , Quinoxalinas/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Xantinas/farmacologia , Animais , Células CACO-2 , Inibidores da Dipeptidil Peptidase IV/efeitos adversos , Inibidores da Dipeptidil Peptidase IV/metabolismo , Humanos , Hipoglicemiantes/efeitos adversos , Hipoglicemiantes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Permeabilidade , Quinoxalinas/metabolismo , Quinoxalinas/farmacocinética , Xantinas/metabolismo , Xantinas/farmacocinética
5.
J Med Chem ; 58(8): 3315-28, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25710631

RESUMO

Activation of TGR5 stimulates intestinal glucagon-like peptide-1 (GLP-1) release, but activation of the receptors in gallbladder and heart has been shown to cause severe on-target side effects. A series of low-absorbed TGR5 agonists was prepared by modifying compound 2 with polar functional groups to limit systemic exposure and specifically activate TGR5 in the intestine. Compound 15c, with a molecular weight of 1401, a PSA value of 223 Å(2), and low permeability on Caco-2 cells, exhibited satisfactory potency both in vitro and in vivo. Low levels of 15c were detected in blood, bile, and gallbladder tissue, and gallbladder-related side effects were substantially decreased compared to the absorbed small-molecule TGR5 agonist 2.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Intestinos/efeitos dos fármacos , Receptores Acoplados a Proteínas G/agonistas , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Administração Oral , Animais , Células CACO-2 , Linhagem Celular , Diabetes Mellitus Tipo 2/metabolismo , Descoberta de Drogas , Humanos , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Terapia de Alvo Molecular , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo , Bibliotecas de Moléculas Pequenas/administração & dosagem , Bibliotecas de Moléculas Pequenas/farmacocinética
6.
Invest New Drugs ; 28(4): 472-81, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19533021

RESUMO

Numerous studies have documented that various naturally derived ligands or synthetic non-thiazolidinediones (TZD) as peroxisome proliferator-activated receptor gamma (PPARgamma) agonists have shown moderate or potent antitumor activities, which is PPARgamma independent or partially dependent. However, the PPARgamma agonistic or glucose-lowering activity is ranked first more often than antitumor activity to determine promising novel PPARgamma agonists for potential clinical use. In this study, we hypothesized that there might exist some compounds with less PPARgamma agonistic activity but potent antitumor activity. Thereafter, we evaluated the PPARgamma agonistic and antitumor activity of a novel series of alpha-aryloxy-alpha-methylhydrocinnamic acid derivatives synthesized with the initial aim of developing novel PPARgamma agonists as hypoglycemic agents. MTT assay results revealed that several compounds were able to inhibit cell proliferation in a dose-dependent manner with IC(50) 12.7-29.7 microM, better than that of rosiglitazone (45.9-141 microM), although the PPARgamma agonistic activity of most compounds is much lower than rosiglitazone. Some compounds induced cell cycle arrest and apoptosis tested by Flow Cytometry. Oral administration of DH9 (100 mg/kg/d) for 21 days to BALB/c nude mice bearing xenografts including MGC-803, NCI-H460, HT-29 and OS-RC-2 cells significantly retarded tumor growth. DG8 and DJ5 showed benefits in some of the above four xenografts. Our findings demonstrate that these compounds have potent antitumor activity in vitro and in vivo and pyrimidinyl-arylpropionic acid derivatives might be viable resources in the development of new antineoplastic agents.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Fenilpropionatos/farmacologia , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Camundongos , Camundongos Nus , Modelos Químicos , PPAR gama/agonistas , Fenilpropionatos/química , Rosiglitazona , Relação Estrutura-Atividade , Tiazolidinedionas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Chemotherapy ; 55(6): 468-76, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19996593

RESUMO

BACKGROUND: Due to chemotherapy resistance in osteosarcoma subgroups, the prognosis of these patients is still poor, and the development of new agents is of utmost importance. The aim of our study was to test the antitumor effects of two novel alpha-aryloxy-alpha-methylhydrocinnamic acid derivatives as peroxisome proliferator-activated receptor (PPAR) gamma agonists, together with rosiglitazone, a well-known thiazolidinedione (TZD) acting on several osteosarcoma cell lines. METHODS/RESULTS: The MTT assay revealed that cell viability was inhibited in a dose-dependent manner with IC(50) 6.2-15.8 microM for the two novel compounds and rosiglitazone (48.4-83.5 microM). Exposure to DG8 and DH9 at low micromolar concentrations induced a dose-dependent block of DNA synthesis and colony formation. In these antitumor assays, DG8 and DH9 were more effective than rosiglitazone, although the PPARgamma agonistic activity of rosiglitazone is much higher. The SiRNA approach to downregulate specifically PPARgamma in U-2OS cells did not affect the cytotoxic efficiency of either the two novel compounds or rosiglitazone. CONCLUSION: These observations suggest that non-TZDs with less PPARgamma agonistic activity might show more potent antitumor efficacy independent of PPARgamma in human osteosarcoma cells, which supports the possibility that they could be beneficial in the treatment of osteosarcoma patients.


Assuntos
Antineoplásicos/farmacologia , Osteossarcoma/tratamento farmacológico , PPAR gama/agonistas , Fenilpropionatos/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Concentração Inibidora 50 , Osteossarcoma/patologia , Fenilpropionatos/administração & dosagem , Fenilpropionatos/química , Rosiglitazona , Tiazolidinedionas/administração & dosagem , Tiazolidinedionas/farmacologia
8.
Invest New Drugs ; 27(3): 223-32, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18704263

RESUMO

Peroxisome proliferator-activated receptor gamma (PPARgamma) agonists have shown benefit in treating diabetes mellitus, atherosclerosis and cancer. However, widespread use of thiazolidinediones (TZDs), the clinically used synthetic PPARgamma agonists, has been limited by adverse cardiovascular effects. Consequently, numerous novel non-TZD compounds were synthesized and antidiabetic efficacy was evaluated to identify PPARgamma agonists for potential clinical use. On the other hand, many studies have documented that the antitumor activity of PPARgamma agonists is PPARgamma independent. Here we hypothesized that there might exist some compounds with less PPARgamma agonistic activity or antidiabetic efficacy but potent antitumor activity. In this study, we evaluated the PPARgamma agonistic and antitumor activity of several newly synthesized alpha-aryloxy-alpha-methylhydrocinnamic acid derivatives as PPARgamma agonists in a panel of human cancer cell lines, which showed promising antitumor activity without appreciable PPARgamma agonistic activity. The results of MTT assay revealed that cell viability was inhibited in a dose dependent manner with IC(50) 17.1-55.1 microM for all the novel compounds and rosiglitazone (17.2-165 microM). They induced cell cycle arrest and apoptosis tested by Flow Cytometry. In conclusion, our findings demonstrate that these compounds have potent in vitro cytotoxicity, the possible mechanism of which is through induction of apoptosis and cell cycle arrest.


Assuntos
Antineoplásicos/farmacologia , PPAR gama/agonistas , Fenilpropionatos/farmacologia , Anexina A5/metabolismo , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , L-Lactato Desidrogenase/metabolismo , Fenilpropionatos/química , Propídio/metabolismo , Rosiglitazona , Tiazolidinedionas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA