Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(8): 11898-11911, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38225492

RESUMO

Rice is the main food crops with the higher capacity for cadmium (Cd) uptake, necessitating the urgent need for remediation measures to address Cd in paddy soil. Reasonable agronomic methods are convenient and favorable for fixing the issue. In this study, a pot experiment was employed to evaluate the effects of two foliar (NaH2PO4, SDP; KH2PO4, PDP) and two solid phosphate fertilizers (double-superphosphate, DSP; calcium-magnesium phosphate, CMP) on uptake and remobilization of Cd in rice plants under the low-P and rich-Cd soil. The results revealed that these four phosphorus fertilizer significantly down-regulated the relative expression of OsNRAMP5 involved in Cd absorption, while up-regulated OsPCS1 expression and increased distribution of Cd into the cell wall in roots. Furthermore, phosphorus fertilizer resulted in a significant decrease in the relative expression of OsLCT1 in stems and OsLCD in leaves, decreased the transfer factor of Cd from shoots to grains, and ulterior reduced the Cd accumulation in three protein components of globulin, albumin, and glutelin, making the average Cd concentration of brown rice decreased by 82.96%. These results comprehensively indicate that in situations with similar soil backgrounds, the recommended application of solid CMP and foliar PDP can alleviate the toxicity of Cd by reducing its absorption and remobilization.


Assuntos
Oryza , Poluentes do Solo , Solo , Fósforo/metabolismo , Cádmio/análise , Fertilizantes/análise , Oryza/metabolismo , Poluentes do Solo/análise
2.
Plant Physiol Biochem ; 207: 108351, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38217926

RESUMO

The reduction of cadmium (Cd) accumulation in rice grains through biofortification of essential nutrients like zinc (Zn) and silicon (Si) is an area of study that has gained significant attention. However, there is limited understanding of the mechanism of Zn/Si interaction on Cd accumulation and remobilization in rice plants. This work used a pot experiment to examine the effects of Zn and Si applied singly or in combination on the physiological metabolism of Cd in different rice organs under Cd stress. The results revealed that: Zn/Si application led to a significant decrease in root Cd concentration and reduce the value of Tf Soil-Root in filling stage. The content of phytochelatin (PCs, particularly PC2) and glutathione (GSH) in roots, top and basal nodes were increased with Zn/Si treatment application. Furthermore, Zn/Si treatment promoted the distribution of Cd in cell wall during Cd stress. These findings suggest that Zn/Si application facilitates the compartmentalization of Cd within subcellular structures and enhances PCs production in vegetative organs, thereby reducing Cd remobilization. Zn/Si treatment upregulated the metabolism of amino acid components involved in osmotic regulation, secondary metabolite synthesis, and plant chelating peptide synthesis in vegetative organs. Additionally, it significantly decreased the accumulation of Cd in globulin, albumin, and glutelin, resulting in an average reduction of 50.87% in Cd concentration in milled rice. These results indicate that Zn/Si nutrition plays a crucial role in mitigating heavy metal stress and improving the nutritional quality of rice by regulating protein composition and coordinating amino acid metabolism balance.


Assuntos
Metais Pesados , Oryza , Poluentes do Solo , Cádmio/metabolismo , Zinco/metabolismo , Silício/farmacologia , Silício/metabolismo , Metais Pesados/metabolismo , Glutationa/metabolismo , Oryza/metabolismo , Aminoácidos/metabolismo , Poluentes do Solo/metabolismo , Solo
3.
Bioorg Chem ; 112: 104927, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33932772

RESUMO

Four new chromene derivatives, pestalotiochromenoic acids A - D (1, 2, 4, and 5), and two new chromone derivatives, pestalotiochromones A and B (6 and 7), were obtained from the marine alga-derived fungus Pestalotiopsis neglecta SCSIO41403, as well as a reported derivate named piperochromenoic acid (3) with its configuration determined for the first time. Their structures were determined by detailed nuclear magnetic resonance (NMR) and mass spectroscopic analyses, while the absolute configurations were established by theoretical NMR and electronic circular dichroism (ECD) calculation, including Mo2(OAc)4-induced ECD experiments. Those chromene and chromone derivatives displayed weak cytotoxicity, but showed obvious liver X receptors (LXRs) modulatory activities, by in vitro tests on the expression of LXRα, LXRß and theirtarget gene ABCA1, as well as in silico docking analysis. Moreover, the high binding affinities between pestalotiochromone A (6) and LXRα, revealed by surface plasmon resonance (SPR) with the dissociation equilibrium constant (KD) value of 6.2 µM, demonstrated 6 could act as a new potential LXR agonist.


Assuntos
Cromonas/farmacologia , Receptores X do Fígado/metabolismo , Neglecta/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromonas/química , Cromonas/isolamento & purificação , Relação Dose-Resposta a Droga , Humanos , Receptores X do Fígado/genética , Estrutura Molecular , Relação Estrutura-Atividade
4.
Int J Mol Sci ; 21(4)2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32075333

RESUMO

In plants, auxin/indoleacetic acid (Aux/IAA) proteins are transcriptional regulators that regulate developmental process and responses to phytohormones and stress treatments. However, the regulatory functions of the Vitis vinifera L. (grapevine) Aux/IAA transcription factor gene VvIAA18 have not been reported. In this study, the VvIAA18 gene was successfully cloned from grapevine. Subcellular localization analysis in onion epidermal cells indicated that VvIAA18 was localized to the nucleus. Expression analysis in yeast showed that the full length of VvIAA18 exhibited transcriptional activation. Salt tolerance in transgenic tobacco plants and Escherichia. coli was significantly enhanced by VvIAA18 overexpression. Real-time quantitative PCR analysis showed that overexpression of VvIAA18 up-regulated the salt stress-responsive genes, including pyrroline-5-carboxylate synthase (NtP5CS), late embryogenesis abundant protein (NtLEA5), superoxide dismutase (NtSOD), and peroxidase (NtPOD) genes, under salt stress. Enzymatic analyses found that the transgenic plants had higher SOD and POD activities under salt stress. Meanwhile, component analysis showed that the content of proline in transgenic plants increased significantly, while the content of hydrogen peroxide (H2O2) and malondialdehyde (MDA) decreased significantly. Based on the above results, the VvIAA18 gene is related to improving the salt tolerance of transgenic tobacco plants. The VvIAA18 gene has the potential to be applied to enhance plant tolerance to abiotic stress.


Assuntos
Nicotiana/genética , Plantas Geneticamente Modificadas/genética , Tolerância ao Sal/genética , Vitis/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Secas , Escherichia coli/genética , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Nicotiana/efeitos dos fármacos , Nicotiana/crescimento & desenvolvimento , Fatores de Transcrição/genética
5.
Physiol Mol Biol Plants ; 23(4): 933-943, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29158640

RESUMO

Sucrose non-fermenting-1-related protein kinase 1 (SnRK1) has been shown to play an essential role in regulating saccharide metabolism and starch biosynthesis of plant. The regulatory role of StSnRK1 from potato in regulating carbohydrate metabolism and starch accumulation has not been investigated. In this work, a cDNA encoding the SnRK1 protein, named StSnRK1, was isolated from potato. The open reading frame contained 1545 nucleotides encoding 514 amino acids. Subcellular localization analysis in onion epidermal cells indicated that StSnRK1 protein was localized to the nucleus. The coding region of StSnRK1 was cloned into a binary vector under the control of 35S promoter and then transformed into tobacco to obtain transgenic plants. Transgenic tobacco plants expressing StSnRK1 were shown to have a significant increased accumulation of starch content, as well as sucrose, glucose and fructose content. Real-time quantitative PCR analysis indicated that overexpression of StSnRK1 up-regulated the expression of sucrose synthase (NtSUS), ADP-glucose pyrophosphorylase (NtAGPase) and soluble starch synthase (NtSSS III) genes involved in starch biosynthesis in the transgenic plants. In contrast, the expression of sucrose phosphate synthase (NtSPS) gene was decreased in the transgenic plants. Meanwhile, enzymatic analyses indicated that the activities of major enzymes (SUS, AGPase and SSS) involved in the starch biosynthesis were enhanced, whereas SPS activity was decreased in the transgenic plants compared to the wild-type. These results suggest that the manipulation of StSnRK1 expression might be used for improving quality of plants in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA