Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Biol Trace Elem Res ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39141196

RESUMO

Mammalian cytosolic selenoprotein thioredoxin reductase (TXNRD1) is crucial for maintaining the reduced state of cellular thioredoxin 1 (TXN1) and is commonly up-regulated in cancer cells. TXNRD1 has been identified as an effective target in cancer chemotherapy. Discovering novel TXNRD1 inhibitors and elucidating the cellular effects of TXNRD1 inhibition are valuable for developing targeted therapies based on redox regulation strategies. In this study, we demonstrated that butein, a plant-derived small molecule flavonoid, is a novel TXNRD1 inhibitor. We found that butein irreversibly inhibited recombinant TXNRD1 activity in a time-dependent manner. Using TXNRD1 mutant variants and LC-MS, we identified that butein modifies the catalytic cysteine (Cys) residues of TXNRD1. In cellular contexts, butein promoted the accumulation of reactive oxygen species (ROS) and exhibited cytotoxic effects in HeLa cells. Notably, we found that pharmacological inhibition of TXNRD1 by butein overcame the cisplatin resistance of A549 cisplatin-resistant cells, accompanied by increased cellular ROS levels and enhanced expression of p53. Taken together, the results of this study demonstrate that butein is an effective small molecule inhibitor of TXNRD1, highlighting the therapeutic potential of inhibiting TXNRD1 in platinum-resistant cancer cells.

2.
Adv Cancer Res ; 162: 125-143, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39069367

RESUMO

Cases of melanoma are doubling every 12 years, and in stages III and IV, the disease is associated with high mortality rates concomitant with unresectable metastases and therapeutic drug resistance. Despite some advances in treatment success, there is a marked need to understand more about the pathology of the disease. The present review provides an overview of how melanoma cells use and modulate redox pathways to facilitate thiol homeostasis and melanin biosynthesis and describes plausible redox targets that may improve therapeutic approaches in managing malignant disease and metastasis. Melanotic melanoma has some unique characteristics. Making melanin requires a considerable dedication of cellular energy resources and utilizes glutathione and glutathione transferases in certain steps in the biosynthetic pathway. Melanin is an antioxidant but is also functionally important in hematopoiesis and influential in various aspects of host immune responses, giving it unique characteristics. Together with other redox traits that are specific to melanoma, a discussion of possible therapeutic approaches is also provided.


Assuntos
Melaninas , Melanoma , Oxirredução , Humanos , Melanoma/metabolismo , Melanoma/patologia , Melanoma/tratamento farmacológico , Melaninas/metabolismo , Melaninas/biossíntese , Animais , Transdução de Sinais , Glutationa/metabolismo
3.
Therap Adv Gastroenterol ; 17: 17562848241237631, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645513

RESUMO

Background: Given the superior performance of various therapies over sorafenib in advanced hepatocellular carcinoma (HCC) and the absence of direct comparisons, it is crucial to explore the efficacy of these treatments in phase III randomized clinical trials. Objectives: The goal is to identify which patients are most likely to benefit significantly from these emerging therapies, contributing to more personalized and informed clinical decision-making. Design: Systematic review and network meta-analysis. Data sources and methods: PubMed, Embase, ClinicalTrials.gov, and international conference databases have been searched from 1 January 2010 to 1 December 2023. Results: After screening, 17 phase III trials encompassing 18 treatments were included. In the whole-population network meta-analysis, the newly first-line tremelimumab plus durvalumab (Tre + Du) was found to be comparable with atezolizumab plus bevacizumab (Atezo + Beva) in providing the best overall survival (OS) benefit [hazard ratio (HR) 1.35, 95% confidence interval (CI): 0.93-1.92]. Concerning OS benefits, sintilimab plus bevacizumab biosimilar (Sint + Beva), camrelizumab plus rivoceranib (Camre + Rivo), and lenvatinib plus pembrolizumab (Lenva + Pemb) appear to exhibit similar effects to Tre + Du and Atezo + Beva. In the context of progression-free survival, Atezo + Beva seemed to outperform Tre + Du (HR: 0.66 CI: 0.49-0.87), while the effects are comparable to Sint + Beva, Camre + Rivo, and Lenva + Pemb. Upon comparison between Asia-Pacific and non-Asia-Pacific cohorts, as well as between hepatitis B virus (HBV)-infected and non-HBV-infected populations, immune checkpoint inhibitor (ICI)-based treatments seemed to exhibit heightened efficacy in the Asia-Pacific group and among individuals with HBV infection. However, combined ICI-based therapies did not show more effectiveness than molecular-targeted drugs in patients without macrovascular invasion and/or extrahepatic spread. As for grades 3-5 adverse events, combined therapies showed comparable safety to sorafenib and lenvatinib. Conclusion: Compared with sorafenib and lenvatinib, combination therapies based on ICIs significantly improved the prognosis of advanced HCC and demonstrated similar safety. At the same time, the optimal treatment approach should be tailored to individual patient characteristics, such as etiology, tumor staging, and serum alpha-fetoprotein levels. With lower incidence rates of treatment-related adverse events and non-inferior efficacy compared to sorafenib, ICI monotherapies should be prioritized as a first-line treatment approach for patients who are not suitable candidates for ICI-combined therapies. Trial registration: PROSPERO, CRD42022288172.


Lay summary/Key points The efficiency of various systemic therapies in advanced HCC patients with specific characteristics remains to be explored. This study revealed that the efficacy of ICI combined therapies is influenced by factors such as tumor staging, etiology, patient demographics, and more. Additionally, ICI monotherapies should be prioritized as a first-line treatment approach for patients who are not suitable candidates for ICI combined therapies. Complementing to recent guidelines, this study indicated that several critical factors needed to be took into consideration for patients with advanced HCC.

4.
J Environ Sci (China) ; 141: 249-260, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38408825

RESUMO

Nitrosamines are a class of carcinogens which have been detected widely in food, water, some pharmaceuticals as well as tobacco. The objectives of this paper include reviewing the basic information on tobacco consumption and nitrosamine contents, and assessing the health risks of tobacco nitrosamines exposure to Chinese smokers. We searched the publications in English from "Web of Science" and those in Chinese from the "China National Knowledge Infrastructure" in 2022 and collected 151 literatures with valid information. The content of main nitrosamines in tobacco, including 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone (NNK), N-nitrosonornicotine (NNN), N-nitrosoanatabine (NAT), N-nitrosoanabasine (NAB), total tobacco-specific nitrosamines (TSNA), and N-nitrosodimethylamine (NDMA) were summarized. The information of daily tobacco consumption of smokers in 30 provinces of China was also collected. Then, the intakes of NNN, NNK, NAT, NAB, TSNAs, and NDMA via tobacco smoke were estimated as 1534 ng/day, 591 ng/day, 685 ng/day, 81 ng/day, 2543 ng/day, and 484 ng/day by adult smokers in 30 provinces, respectively. The cancer risk (CR) values for NNN and NNK inhalation intake were further calculated as 1.44 × 10-5 and 1.95 × 10-4. The CR value for NDMA intake via tobacco smoke (inhalation: 1.66 × 10-4) indicates that NDMA is similarly dangerous in tobacco smoke when compared with the TSNAs. In China, the CR values caused by average nitrosamines intake via various exposures and their order can be estimated as the following: smoke (3.75 × 10-4) > food (1.74 × 10-4) > drinking water (1.38 × 10-5). Smokers in China averagely suffer 200% of extra cancer risk caused by nitrosamines in tobacco when compared with non-smokers.


Assuntos
Neoplasias , Nitrosaminas , Poluição por Fumaça de Tabaco , Adulto , Humanos , Fumantes , Poluição por Fumaça de Tabaco/efeitos adversos , Nitrosaminas/análise , Carcinógenos/análise , Fumaça/análise , Dimetilnitrosamina , China/epidemiologia , Neoplasias/epidemiologia , Produtos do Tabaco
5.
Biochem Pharmacol ; 219: 115929, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38000559

RESUMO

Reductive stress is characterized by an excess of cellular electron donors and can be linked with various human pathologies including cancer. We developed melanoma cell lines resistant to reductive stress agents: rotenone (ROTR), n-acetyl-L-cysteine, (NACR), or dithiothreitol (DTTR). Resistant cells divided more rapidly and had intracellular homeostatic redox-couple ratios that were shifted towards the reduced state. Resistance caused alterations in general cell morphology, but only ROTR cells had significant changes in mitochondrial morphology with higher numbers that were more isolated, fragmented and swollen, with greater membrane depolarization and decreased numbers of networks. These changes were accompanied by lower basal oxygen consumption and maximal respiration rates. Whole cell flux analyses and mitochondrial function assays showed that NACR and DTTR preferentially utilized tricarboxylic acid (TCA) cycle intermediates, while ROTR used ketone body substrates such as D, L-ß-hydroxybutyric acid. NACR and DTTR cells had constitutively decreased levels of reactive oxygen species (ROS), although this was accompanied by activation of nuclear factor erythroid 2-related factor 2 (Nrf2), with concomitant increased expression of the downstream gene products such as glutathione S-transferase P (GSTP). Further adaptations included enhanced expression of endoplasmic reticulum proteins controlling the unfolded protein response (UPR). Although expression patterns of these UPR proteins were distinct between the resistant cells, a trend implied that resistance to reductive stress is accompanied by a constitutively increased UPR phenotype in each line. Overall, tumor cells, although tolerant of oxidative stress, can adapt their energy and survival mechanisms in lethal reductive stress conditions.


Assuntos
Estresse do Retículo Endoplasmático , Resposta a Proteínas não Dobradas , Humanos , Estresse do Retículo Endoplasmático/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Linhagem Celular , Proteínas/metabolismo
6.
Adv Cancer Res ; 160: 107-132, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37704286

RESUMO

Microsomal glutathione transferase 1 (MGST1) is a member of the MAPEG family (membrane associated proteins in eicosanoid and glutathione metabolism), defined according to enzymatic activities, sequence motifs, and structural properties. MGST1 is a homotrimer which can bind three molecules of glutathione (GSH), with one modified to a thiolate anion displaying one-third-of-sites-reactivity. MGST1 has both glutathione transferase and peroxidase activities. Each is based on stabilizing the GSH thiolate in the same active site. MGST1 is abundant in the liver and displays a broad subcellular distribution with high levels in endoplasmic reticulum and mitochondrial membranes, consistent with a physiological role in protection from reactive electrophilic intermediates and oxidative stress. In this review paper, we particularly focus on recent advances made in understanding MGST1 activation, induction, broad subcellular distribution, and the role of MGST1 in apoptosis, ferroptosis, cancer progression, and therapeutic responses.


Assuntos
Ferroptose , Neoplasias , Humanos , Apoptose , Glutationa , Glutationa Transferase
7.
Adv Cancer Res ; 160: 83-106, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37704292

RESUMO

Protein disulfide isomerase (PDI) and its superfamilies are mainly endoplasmic reticulum (ER) resident proteins with essential roles in maintaining cellular homeostasis, via thiol oxidation/reduction cycles, chaperoning, and isomerization of client proteins. Since PDIs play an important role in ER homeostasis, their upregulation supports cell survival and they are found in a variety of cancer types. Despite the fact that the importance of PDI to tumorigenesis remains to be understood, it is emerging as a new therapeutic target in cancer. During the past decade, several PDI inhibitors has been developed and commercialized, but none has been approved for clinical use. In this review, we discuss the properties and redox regulation of PDIs within the ER and provide an overview of the last 5 years of advances regarding PDI inhibitors.


Assuntos
Neoplasias , Isomerases de Dissulfetos de Proteínas , Humanos , Carcinogênese , Sobrevivência Celular , Oxirredução
8.
Pharmacol Res ; 196: 106899, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37648102

RESUMO

While recent targeted and immunotherapies in malignant melanoma are encouraging, most patients acquire resistance, implicating a need to identify additional drug targets to improve outcomes. Recently, attention has been given to pathways that regulate redox homeostasis, especially the lipid peroxidase pathway that protects cells against ferroptosis. Here we identify microsomal glutathione S-transferase 1 (MGST1), a non-selenium-dependent glutathione peroxidase, as highly expressed in malignant and drug resistant melanomas and as a specific determinant of metastatic spread and therapeutic sensitivity. Loss of MGST1 in mouse and human melanoma enhanced cellular oxidative stress, and diminished glycolysis, oxidative phosphorylation, and pentose phosphate pathway. Gp100 activated pmel-1 T cells killed more Mgst1 KD than control melanoma cells and KD cells were more sensitive to cytotoxic anticancer drugs and ferroptotic cell death. When compared to control, mice bearing Mgst1 KD B16 tumors had more CD8+ T cell infiltration with reduced expression of inhibitory receptors and increased cytokine response, large reduction of lung metastases and enhanced survival. Targeting MGST1 alters the redox balance and limits metastases in melanoma, enhancing the therapeutic index for chemo- and immunotherapies.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Melanoma , Humanos , Camundongos , Animais , Glutationa Transferase/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Estresse Oxidativo , Neoplasias Pulmonares/tratamento farmacológico , Melanoma/tratamento farmacológico , Glutationa/metabolismo
9.
J Biol Chem ; 299(8): 104920, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37321450

RESUMO

Recent advancements in the treatment of melanoma are encouraging, but there remains a need to identify additional therapeutic targets. We identify a role for microsomal glutathione transferase 1 (MGST1) in biosynthetic pathways for melanin and as a determinant of tumor progression. Knockdown (KD) of MGST1 depleted midline-localized, pigmented melanocytes in zebrafish embryos, while in both mouse and human melanoma cells, loss of MGST1 resulted in a catalytically dependent, quantitative, and linear depigmentation, associated with diminished conversion of L-dopa to dopachrome (eumelanin precursor). Melanin, especially eumelanin, has antioxidant properties, and MGST1 KD melanoma cells are under higher oxidative stress, with increased reactive oxygen species, decreased antioxidant capacities, reduced energy metabolism and ATP production, and lower proliferation rates in 3D culture. In mice, when compared to nontarget control, Mgst1 KD B16 cells had less melanin, more active CD8+ T cell infiltration, slower growing tumors, and enhanced animal survival. Thus, MGST1 is an integral enzyme in melanin synthesis and its inhibition adversely influences tumor growth.


Assuntos
Glutationa Transferase , Melaninas , Melanoma , Animais , Humanos , Camundongos , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Melaninas/biossíntese , Melanoma/genética , Melanoma/imunologia , Melanoma/fisiopatologia , Peixe-Zebra/metabolismo , Oxirredução , Camundongos Endogâmicos C57BL , Linhagem Celular Tumoral , Proliferação de Células/genética
10.
Front Neurosci ; 17: 1152222, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332867

RESUMO

Achieving accurate classification of benign and malignant pulmonary nodules is essential for treating some diseases. However, traditional typing methods have difficulty obtaining satisfactory results on small pulmonary solid nodules, mainly caused by two aspects: (1) noise interference from other tissue information; (2) missing features of small nodules caused by downsampling in traditional convolutional neural networks. To solve these problems, this paper proposes a new typing method to improve the diagnosis rate of small pulmonary solid nodules in CT images. Specifically, first, we introduce the Otsu thresholding algorithm to preprocess the data and filter the interference information. Then, to acquire more small nodule features, we add parallel radiomics to the 3D convolutional neural network. Radiomics can extract a large number of quantitative features from medical images. Finally, the classifier generated more accurate results by the visual and radiomic features. In the experiments, we tested the proposed method on multiple data sets, and the proposed method outperformed other methods in the small pulmonary solid nodule classification task. In addition, various groups of ablation experiments demonstrated that the Otsu thresholding algorithm and radiomics are helpful for the judgment of small nodules and proved that the Otsu thresholding algorithm is more flexible than the manual thresholding algorithm.

11.
Biomolecules ; 13(4)2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37189435

RESUMO

In humans, the cytosolic glutathione S-transferase (GST) family of proteins is encoded by 16 genes presented in seven different classes. GSTs exhibit remarkable structural similarity with some overlapping functionalities. As a primary function, GSTs play a putative role in Phase II metabolism by protecting living cells against a wide variety of toxic molecules by conjugating them with the tripeptide glutathione. This conjugation reaction is extended to forming redox sensitive post-translational modifications on proteins: S-glutathionylation. Apart from these catalytic functions, specific GSTs are involved in the regulation of stress-induced signaling pathways that govern cell proliferation and apoptosis. Recently, studies on the effects of GST genetic polymorphisms on COVID-19 disease development revealed that the individuals with higher numbers of risk-associated genotypes showed higher risk of COVID-19 prevalence and severity. Furthermore, overexpression of GSTs in many tumors is frequently associated with drug resistance phenotypes. These functional properties make these proteins promising targets for therapeutics, and a number of GST inhibitors have progressed in clinical trials for the treatment of cancer and other diseases.


Assuntos
Glutationa Transferase , Neoplasias , Humanos , COVID-19/genética , Inibidores Enzimáticos/farmacologia , Glutationa/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Neoplasias/genética , Neoplasias/tratamento farmacológico
12.
Crit Rev Food Sci Nutr ; 63(25): 7288-7310, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35238261

RESUMO

The edible fungi have both edible and medicinal functions, in which terpenoids are one of the most important active ingredients. Terpenoids possess a wide range of biological activities and show great potential in the pharmaceutical and healthcare industries. In this review, the diverse biological activities of edible fungi terpenoids were summarized with emphasis on the mechanism of anti-cancer and anti-inflammation. Subsequently, this review focuses on advances in knowledge and understanding of the biosynthesis of terpenoids in edible fungi, especially in the generation of sesquiterpenes, diterpenes, and triterpenes. This paper is aim to provide an overview of biological functions and biosynthesis developed for utilizing the terpenoids in edible fungi.


Assuntos
Diterpenos , Sesquiterpenos , Triterpenos , Terpenos , Fungos
13.
Food Res Int ; 162(Pt A): 111978, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461223

RESUMO

Edible mushroom protein has been regarded as a promising protein source due to its nutritional value and sustainability. In the present study, Pleurotus geesteranus proteins were extracted with alkaline solution and then precipitated with salting out (PPS) and isoelectric point precipitation (PPI), respectively. The influences of precipitation method on the physicochemical and functional properties of these two kinds of proteins were studied. The results showed that both PPS and PPI had a good balance of essential amino acids. These two proteins were mainly consisted of polypeptides with a molecular weight lower than 70 kDa. Using proteome analysis, a number of 772 and 459 protein compositions were identified in PPS and PPI, respectively. Compared to PPS, PPI showed a higher zeta potential, higher surface hydrophobicity, lower content of ß-sheet and ß-turn secondary structure, as well as lower denaturation temperature (Td) and enthalpy change of the denaturation (ΔH). These differences in the physicochemical properties between PPS and PPI resulted in the occurrence of differences in their functional and digestive properties. For example, PPS showed obviously higher protein solubility in water than PPI, especially at natural pH, PPS solution was clear, while PPI showed precipitates. PPI had higher foam capability (FC), lower foaming stability (FS), and lower emulsion stability index (ESI) as compared to PPS. PPI was easier to digest in the pepsin digestion period, while PPS showed a higher nitrogen release after trypsin digestion. These findings on the physicochemical and functional properties of P. geesteranus proteins will help to broaden their applications as protein ingredient in food industry.


Assuntos
Agaricales , Pleurotus , Ponto Isoelétrico , Cloreto de Sódio , Peso Molecular
14.
Anal Chem ; 94(43): 15057-15066, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36262049

RESUMO

Autophagy is a core recycling process for homeostasis, with its dysfunction associated with tumorigenesis and various diseases. Yet, its subtle intracellular details are covered due to the limited resolution of conventional microscopies. The major challenge for modern super-resolution microscopy deployment is the lack of a practical labeling system, which could provide robust fluorescence with fidelity in the context of the dynamic autophagy microenvironment. Herein, a representative autophagy marker LC3 protein is selected to develop two hybrid self-labeling systems with tetramethylrhodamine (TMR) fluorophores through SNAP/Halo-tag technologies. A systematic investigation indicated that the match of the LC3-Halo and TMR ligand remarkably outperforms that of LC3-SNAP, as the former Halo system exhibited more robust single-molecule brightness (440 vs 247), total photon numbers (45600 vs 13500), and dwell time of the initial bright state (0.82 vs 0.40 s) than the latter. With the aid of this desirable Halo system, for the first time, live-cell ferritinophagy is monitored with a spatial resolution of ∼50 nm, which disclosed reduced sizes of autophagosomes (∼650 nm, ferritinophagy) than those in nonselective (∼840 nm, mammalian target of rapamycin (mTOR)) and selective autophagy (∼900 nm, mitophagy).


Assuntos
Autofagia , Corantes Fluorescentes , Ligantes , Mitofagia , Proteínas
15.
Front Physiol ; 13: 772313, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464086

RESUMO

Mitochondrial malfunction is a hallmark of many diseases, including neurodegenerative disorders, cardiovascular and lung diseases, and cancers. We previously found that alveolar progenitor cells, which are more resistant to cigarette smoke-induced injury than the other cells of the lung parenchyma, upregulate the mtDNA-encoded small non-coding RNA mito-ncR-805 after exposure to smoke. The mito-ncR-805 acts as a retrograde signal between the mitochondria and the nucleus. Here, we identified a region of mito-ncR-805 that is conserved in the mammalian mitochondrial genomes and generated shorter versions of mouse and human transcripts (mmu-CR805 and hsa-LDL1, respectively), which differ in a few nucleotides and which we refer to as the "functional bit". Overexpression of mouse and human functional bits in either the mouse or the human lung epithelial cells led to an increase in the activity of the Krebs cycle and oxidative phosphorylation, stabilized the mitochondrial potential, conferred faster cell division, and lowered the levels of proapoptotic pseudokinase, TRIB3. Both oligos, mmu-CR805 and hsa-LDL1 conferred cross-species beneficial effects. Our data indicate a high degree of evolutionary conservation of retrograde signaling via a functional bit of the D-loop transcript, mito-ncR-805, in the mammals. This emphasizes the importance of the pathway and suggests a potential to develop this functional bit into a therapeutic agent that enhances mitochondrial bioenergetics.

16.
Biomed Pharmacother ; 148: 112676, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35149387

RESUMO

Since the discovery of the kahalalide family of marine depsipeptides in 1993, considerable work has been done to develop these compounds as new and biologically distinct anti-cancer agents. Clinical trials and laboratory research have yielded a wealth of data that indicates tolerance of kahalalides in healthy cells and selective activity against diseased cells. Currently, two molecules have attracted the greates level of attention, kahalalide F (KF) and isokahalalide F (isoKF, Irvalec, PM 02734, elisidepsin). Both compounds were originally isolated from the sarcoglossan mollusk Elysia rufescens but due to distinct structural characteristics it has been hypothesized and recently shown that the ultimate origin of the molecules is microbial. The search for their true source has been a subject of considerable research in the anticipation of finding new analogs and a culturable expression system that can produce sufficient material through fermentation to be industrially relevant.


Assuntos
Antineoplásicos , Depsipeptídeos , Neoplasias , Animais , Antineoplásicos/química , Depsipeptídeos/farmacologia , Moluscos/química , Neoplasias/tratamento farmacológico
17.
J Exp Clin Cancer Res ; 41(1): 5, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34980201

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNA) have an essential role in progression and chemoresistance of hepatocellular carcinoma (HCC). In-depth study of specific regulatory mechanisms is of great value in providing potential therapeutic targets. The present study aimed to explore the regulatory functions and mechanisms of lncRNA TINCR in HCC progression and oxaliplatin response. METHODS: The expression of TINCR in HCC tissues and cell lines was detected by quantitative reverse transcription PCR (qRT-PCR). Cell proliferation, migration, invasion, and chemosensitivity were evaluated by cell counting kit 8 (CCK8), colony formation, transwell, and apoptosis assays. Luciferase reporter assays and RNA pulldown were used to identify the interaction between TINCR and ST6 beta-galactoside alpha-2,6-sialyltransferase 1 (ST6GAL1) via miR-195-3p. The corresponding functions were verified in the complementation test and in vivo animal experiment. RESULTS: TINCR was upregulated in HCC and associated with poor patient prognosis. Silencing TINCR inhibited HCC proliferation, migration, invasion, and oxaliplatin resistance while overexpressing TINCR showed opposite above-mentioned functions. Mechanistically, TINCR acted as a competing endogenous (ceRNA) to sponge miR-195-3p, relieving its repression on ST6GAL1, and activated nuclear factor kappa B (NF-κB) signaling. The mouse xenograft experiment further verified that knockdown TINCR attenuated tumor progression and oxaliplatin resistance in vivo. CONCLUSIONS: Our finding indicated that there existed a TINCR/miR-195-3p/ST6GAL1/NF-κB signaling regulatory axis that regulated tumor progression and oxaliplatin resistance, which might be exploited for anticancer therapy in HCC.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , NF-kappa B/metabolismo , Oxaliplatina/uso terapêutico , RNA Longo não Codificante/genética , Animais , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Feminino , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Nus , Oxaliplatina/farmacologia , Transfecção
18.
mBio ; 13(1): e0197921, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35041523

RESUMO

A rare subset of HIV-infected individuals, termed elite controllers (ECs), can maintain long-term control over HIV replication in the absence of antiretroviral therapy (ART). To elucidate the biological mechanism of resistance to HIV replication at the molecular and cellular levels, we performed RNA sequencing and identified alternative splicing variants from ECs, HIV-infected individuals undergoing ART, ART-naive HIV-infected individuals, and healthy controls. We identified differential gene expression patterns that are specific to ECs and may influence HIV resistance, including alternative RNA splicing and exon usage variants of the CREM/ICER gene (cyclic AMP [cAMP]-responsive element modulator/inducible cAMP early repressors). The knockout and knockdown of specific ICER exons that were found to be upregulated in ECs resulted in significantly increased HIV infection in a CD4+ T cell line and primary CD4+ T cells. Overexpression of ICER isoforms decreased HIV infection in primary CD4+ T cells. Furthermore, ICER regulated HIV long terminal repeat (LTR) promoter activity in a Tat-dependent manner. Together, these results suggest that ICER is an HIV host factor that may contribute to the HIV resistance of ECs. These findings will help elucidate the mechanisms of HIV control by ECs and may yield a new approach for treatment of HIV. IMPORTANCE A small group of HIV-infected individuals, termed elite controllers (ECs), display control of HIV replication in the absence of antiretroviral therapy (ART). However, the mechanism of ECs' resistance to HIV replication is not clear. In our work, we found an increased expression of specific, small isoforms of ICER in ECs. Further experiments proved that ICER is a robust host factor to regulate viral replication. Furthermore, we found that ICER regulates HIV LTR promoter activity in a Tat-dependent manner. These findings suggest that ICER is related to spontaneous control of HIV infection in ECs. This study may help elucidate a novel target for treatment of HIV.


Assuntos
Infecções por HIV , Humanos , Fatores de Transcrição , AMP Cíclico/metabolismo , Linhagem Celular , Isoformas de Proteínas , Modulador de Elemento de Resposta do AMP Cíclico/genética
19.
Front Oncol ; 12: 1089688, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713523

RESUMO

Background: The lipid metabolism status of patients with colorectal cancer (CRC) has not been understood comprehensively. The present study investigated the characteristics of lipid metabolism parameters in CRC patients with or without metastases and identified the independent prognostic factors of long-term prognosis. Methods: The clinicopathological data of 231 CRC patients along with 259 formalin-fixed paraffin-embedded samples with or without liver or lung metastasis were retrieved and stained for apolipoprotein B (apoB) via immunohistochemistry (IHC) in our center. The correlation and multivariable analysis between blood circulating apolipoprotein A-I (apoA1), apoB and overall survival (OS) were analyzed. Results: In the multivariable analysis, apoA1, apoB and apolipoprotein B and apolipoprotein A-I (apoB/A) ratio, were identified as independent prognostic factors for OS. Moreover, the apoB/A ratio showed a significantly negative association with OS time (R=-0.187, P=0.004). CRC patients with low apoB/A ratio had better 1-, 3- and 5-year OS rates than those who had high apoB/A ratio (87.1%, 54.3%, and 37.1% vs. 92.5%, 72.0%, and 59.5%, respectively, P=0.001). On histological level, similar expression intensity of apoB between primary CRC and liver metastases indicated better prognostic outcomes than those with different expression levels (100%, 83.3%, and 77.8% vs. 100%, 66.7%, and 33.3%, respectively; P=0.033). Higher level of apoB in the primary CRC interprets into increased incidence of liver metastases. However, the apoB expression levels in the CRC tumor were not parallel to the circulating lipid metabolism parameters. Conclusions: The apoB/A ratio was a reliable independent prognostic factor for predicting the long-term OS of CRC patients. Moreover, the IHC of the primary CRC and metastatic lesions verified the metastatic potential of apoB through a different aspect. Lipid metabolism status for cancer progression reported in the present study possessed potentially prognostic value, but bench-scale studies are needed for their future clinical applications.

20.
Adv Cancer Res ; 152: 305-327, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34353441

RESUMO

Cisplatin has been a mainstay of cancer chemotherapy since the 1970s. Despite its broad anticancer potential, its clinical use has regularly been constrained by kidney toxicities. This review details those biochemical pathways and metabolic conversions that underlie the kidney toxicities. A wide range of redox events contribute to the eventual physiological consequences of drug activities.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Antioxidantes/metabolismo , Cisplatino/metabolismo , Cisplatino/farmacologia , Glutationa/metabolismo , Glutationa/farmacologia , Humanos , Rim/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA