Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neurotrauma ; 39(7-8): 520-529, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35109711

RESUMO

Our previous studies demonstrated that traumatic brain injury (TBI) and ventricular administration of thrombin caused hippocampal neuron loss and cognitive dysfunction via activation of Src family kinases (SFKs). Based on SFK localization in brain, we hypothesized SFK subtypes Fyn and c-Src, as well as SFK downstream molecule Rho-associated protein kinase (ROCK), contribute to cell death and cognitive dysfunction after TBI. We administered nanoparticle wrapped small interfering RNA (siRNA)-Fyn and siRNA-c-Src, or ROCK inhibitor Y-27632 to adult rats subjected to moderate lateral fluid percussion (LFP)-induced TBI. Spatial memory function was assessed from 12 to 16 days, and NeuN stained hippocampal neurons were assessed 16 days after TBI. The combination of siRNA-Fyn and siRNA-c-Src, but neither alone, prevented hippocampal neuron loss and spatial memory deficits after TBI. The ROCK inhibitor Y-27632 also prevented hippocampal neuronal loss and spatial memory deficits after TBI. The data suggest that the combined actions of three kinases (Fyn, c-Src, ROCK) mediate hippocampal neuronal cell death and spatial memory deficits produced by LFP-TBI, and that inhibiting this pathway prevents the TBI-induced cell death and memory deficits.


Assuntos
Lesões Encefálicas Traumáticas , Memória Espacial , Animais , Hipocampo , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Ratos , Ratos Sprague-Dawley
2.
Sci Rep ; 7(1): 14871, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29093541

RESUMO

The study investigated the role of Akt1 through the cardioprotection of high-concentration hydrogen (HCH). C57BL/6 mice were randomly divided into the following groups: sham, I/R, I/R + HCH, I/R + HCH + LY294002 (PI3K inhibitor), I/R + HCH + wortmannin (PI3K inhibitor), I/R + LY294002, and I/R + wortmannin. After 45 min of ischemia, HCH (67% H2 and 33% O2) was administered to mice during a 90-min reperfusion. To investigate the role of Akt1 in the protective effects of HCH, mice were divided into the following groups: I/R + A-674563 (Akt1 selective inhibitor), I/R + HCH + A-674563, I/R + CCT128930 (Akt2 selective inhibitor), and I/R + HCH + CCT128930. After a 4-h reperfusion, serum biochemistry, histological, western blotting, and immunohistochemical analyses were performed to evaluate the role of the PI3K-Akt1 pathway in the protection of HCH. In vitro, 75% hydrogen was administered to cardiomyocytes during 4 h of reoxygenation after 3-h hypoxia. Several analyses were performed to evaluate the role of the Akt1 in the protective effects of hydrogen. HCH resulted in the phosphorylation of Akt1 but not Akt2, and Akt1 inhibition markedly abolished HCH-induced cardioprotection. Our findings reveal that HCH may exert cardioprotective effects through a PI3K-Akt1-dependent mechanism.


Assuntos
Hidrogênio/farmacologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Cardiotônicos , Hidrogênio/uso terapêutico , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Fosforilação
3.
Oxid Med Cell Longev ; 2017: 7430193, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28553434

RESUMO

Objective. The aim of this research is to evaluate the protective effects of methane-rich saline (MS) on lipopolysaccharide- (LPS-) induced acute lung injury (ALI) and investigate its potential antioxidative, anti-inflammatory, and antiapoptotic activities. Methods. LPS-induced (20 mg/kg) ALI rats were injected with MS (2 ml/kg and 20 ml/kg) before the initiation of LPS induction. Survival rate was determined until 96 h after LPS was induced. Lung injury was assayed by oxygenation index, lung permeability index (LPI), wet-to-dry weight (W/D), and histology. The cells in the bronchoalveolar lavage fluid (BALF) were counted. Oxidative stress was examined by the level of malondialdehyde (MDA) and superoxide dismutase (SOD). Inflammatory factors including tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6) in BALF were determined by ELISA. Lung tissue apoptosis was detected by TUNEL staining and western blotting of caspase-3. Results. It was found that methane significantly prolonged the rat survival, decreased the lung W/D ratio and the content of the inflammatory factors, and reduced the amount of caspase-3 and apoptotic index. In addition, MS increased the level of SOD and decreased the level of MDA significantly. Conclusions. MS protects the LPS-challenged ALI via antioxidative, anti-inflammatory, and antiapoptotic effect, which may prove to be a novel therapy for the clinical management of ALI.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Metano/uso terapêutico , Substâncias Protetoras/uso terapêutico , Cloreto de Sódio/uso terapêutico , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/fisiopatologia , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Líquido da Lavagem Broncoalveolar , Citocinas/metabolismo , Lipopolissacarídeos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/fisiopatologia , Pulmão/ultraestrutura , Masculino , Metano/farmacologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Tamanho do Órgão , Permeabilidade , Substâncias Protetoras/farmacologia , Ratos Sprague-Dawley , Cloreto de Sódio/farmacologia , Regulação para Cima/efeitos dos fármacos
4.
Biochem Pharmacol ; 130: 83-92, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28188779

RESUMO

BACKGROUND AND AIMS: This study explored the hepatoprotection of high concentrations of hydrogen (HCH) inhalation in a mouse hepatic ischemia/reperfusion (I/R) injury model and the potential mechanism. METHODS: To explore the role of the PI3K-Akt pathway in the hepatoprotection of HCH, C57BL/6 mice were randomly divided into five groups: Sham, I/R, I/R+HCH, LY294002 (PI3K inhibitor)+I/R+HCH, and LY+I/R groups. Mice received inhalation of 66.7% hydrogen and 33.3% oxygen for 1h immediately after surgery. LY294002 was intravenously injected at 10mol/kg. To explore whether PI3K-Akt pathway activation was mediated by the A2A receptor, additional four groups were included: ZM241385 (A2A receptor antagonist)+I/R+HCH, ZM241385+I/R, bpv(HOpic) (PTEN inhibitor)+I/R, and ZM241385+bpv+I/R+HCH. Six hours after I/R, serum biochemistry, histological examination, Western blotting, and immunohistochemistry were performed to evaluate the hepatoprotection of HCH and the role of the PI3K-Akt pathway and A2A receptor in this protection. RESULTS: Liver dysfunction, hepatic pathological injury, infiltration of inflammatory cytokines, and hepatocyte apoptosis were observed after hepatic I/R, accompanied by inhibition of the PI3K-Akt pathway. HCH significantly improved liver function, reduced serum inflammatory cytokines, and inhibited hepatocyte apoptosis, and also induced the PI3K-Akt pathway activation. In the presence of LY294002 or ZM241385, the protective effects of HCH were markedly attenuated, but the effects of ZM241385 were reversed by bpv(HOpic). CONCLUSION: Our findings indicate that HCH may protect the liver against I/R injury through the A2A dependent PI3K-Akt pathway.


Assuntos
Hidrogênio/administração & dosagem , Fígado/irrigação sanguínea , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Purinérgicos P1/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Administração por Inalação , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação
5.
Med Gas Res ; 6(3): 167-168, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27867485
6.
Brain Res ; 1633: 62-72, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26711852

RESUMO

OBJECTIVE: Delayed neuropsychological sequelae (DNS) are the most common and serious effects of severe carbon monoxide (CO) poisoning, occurring in approximately half of all CO poisoning cases. Growing evidence suggests that oxidative stress and secondary reactions in delayed brain injury are crucial to CO toxicity, similar to ischaemia-reperfusion injury. Exogenous methane plays a protective role in ischaemia-reperfusion injury by affecting key events through anti-oxidant, anti-inflammatory, and anti-apoptosis actions. Our study aimed to explore the potential of exogenous methane to relieve the severity of DNS. METHODS: Thirty-six male Sprague-Dawley (SD) rats were divided into three groups of normal-, CO- and CO plus methane-treated rats. The rats in the latter two groups were exposed to 1000 ppm CO for 40 min and then to 3000 ppm CO for another 20 min. Following CO exposure, saline or methane saline (10 ml/kg) was intraperitoneally administered to rats in the CO group or the CO plus methane group, respectively. On the ninth day after CO exposure, Morris water maze testing, histological analysis, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) and immunohistochemical labelling were performed on 6 rats in each group. The remaining 6 rats in each group were used to detect oxidative damage markers, inflammatory cytokines and apoptosis proteins. RESULTS: Methane significantly improved CO-impaired pathological characteristics as well as learning and memory performance. In addition, methane significantly increased the superoxide dismutase (SOD) activity, lowered the CO-increased level of malondialdehyde (MDA) 3-nitrotyrosine (3-NT) and 8-hydroxy-2-deoxyguanosine (8-OHdG), inhibited levels of tumour necrosis factor-α (TNF-α), interleukin 1-ß (IL1-ß) and caspase-3 in the rat cerebral cortex and hippocampus but had no effect on IL-6 levels. CONCLUSION: The hippocampus was the main target of CO-induced alterations in the rat brain compared to the cerebral cortex. Methane treatment protected the rat brain from the harmful effects induced by CO exposure and improved the outcome of DNS through anti-oxidant, anti-inflammatory and anti-apoptosis activities.


Assuntos
Encéfalo/efeitos dos fármacos , Intoxicação por Monóxido de Carbono/patologia , Metano/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Encéfalo/metabolismo , Encéfalo/patologia , Intoxicação por Monóxido de Carbono/metabolismo , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
7.
Biochem Biophys Res Commun ; 466(2): 155-61, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26363454

RESUMO

As the commonest complication of diabetes mellitus (DM), diabetic retinopathy (DR) is a neuro-vascular disease with chronic inflammatory. Methane could exert potential therapeutic interest in inflammatory pathologies in previous studies. Our study aims to evaluate the protective effects of methane-rich saline on DR and investigate the potential role of related MicroRNA (miRNA) in diabetic rats. Streptozotocin-induced diabetic Sprague-Dawley rats were injected intraperitoneally with methane-rich or normal saline (5 ml/kg) daily for eight weeks. Morphology changes and blood-retinal barrier (BRB) permeability were assessed by hematoxylin eosin staining and Evans blue leakage. Retinal inflammatory cytokines levels of tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL1-ß) were evaluated by immunohistochemistry. Retinal protein expressions of glial fibrillary acidic protein (GFAP) and vascular endothelial growth factor (VEGF) were determined by western blotting. Retinal miRNA expressions were examined by miRNA-specific microarray, verified by quantitative RT-PCR and predicted by GO enrichment and KEGG pathway analysis. There was no significant changes in blood glucose level and body weight of diabetic rats with methane-rich or normal saline treatment, but the decreased retinal thickness, retinal ganglial cell loss and BRB breakdown were all significantly suppressed by methane treatment. DM-induced retinal overexpressions of TNF-α, IL-1ß, GFAP and VEGF were also significantly ameliorated. Moreover, the methane treatment significantly up-regulated retinal levels of miR-192-5p (related to apoptosis and tyrosine kinase signaling pathway) and miR-335 (related to proliferation, oxidative stress and leukocyte). Methane exerts protective effect on DR via anti-inflammation, which may be related to the regulatory mechanism of miRNAs.


Assuntos
Diabetes Mellitus Experimental/complicações , Retinopatia Diabética/prevenção & controle , Metano/química , Cloreto de Sódio/farmacologia , Animais , Glicemia/análise , Barreira Hematorretiniana , Peso Corporal , Masculino , Ratos , Ratos Sprague-Dawley , Cloreto de Sódio/química , Estreptozocina
8.
Int J Clin Exp Pathol ; 8(3): 2680-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26045773

RESUMO

The aim of this study is to evaluate the protective effect and underlying mechanism of hydrogen gas (H2) to glyoxylate induced renal calcium oxalate (CaOx) crystal deposition in mice. In present work, rodent renal CaOx crystal deposition model was introduced by intra-abdominal injection of glyoxylate (100 mg/kg/d) for 5 days. Two days before administration of glyoxylate, inhalation of H2 for 30 min per day was initiated and continued for 7 days. By the end of the study, the samples of 24 hours urine, serum and renal tissue were collected for biochemical and pathological assay. According to levels of urine calcium excretion, renal calcium deposition, a serum excretion of kidney injury molecule-1 (KIM-1) assay and a TUNEL assay, inhalation of H2 could successfully decrease the CaOx crystallizations and protect against renal injury. Crystal deposition in the kidneys is associated with oxidative stress, which was indicated by increased levels of renal malondialdehyde (MDA) and 8-hydroxydeoxyguanosine (8-OHdG) and decreased activities of superoxide dismutase (SOD), glutathione (GSH) and catalase (CAT). These effects were reversed by a high-dose H2 pretreatment. The renal expressions of osteopontin (OPN), CD44, monocyte chemoattractant protein-1 (MCP-1) and interleukin-10 (IL-10) were markedly increased in glyoxylate-treated mice, and H2 significantly attenuated the increase of OPN, CD44 and MCP-1 but upregulated the expression of IL-10. Our findings demonstrate that inhalation of H2 reduces renal crystallization, renal oxidative injury and inflammation and it may be a candidate agent with few adverse effects for prevention of nephrolithiasis.


Assuntos
Hidrogênio/administração & dosagem , Rim/efeitos dos fármacos , Nefrolitíase/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Administração por Inalação , Animais , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Glioxilatos/toxicidade , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Rim/metabolismo , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
9.
Shock ; 44(2): 181-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26009821

RESUMO

Hepatic ischemia/reperfusion (I/R) injury, which occurs in various diseases, introduces severe tissue damage and liver dysfunction. However, no promising therapies for such a significant condition currently exist. Methane has been suggested to exert a protective effect against intestinal I/R injury. In this study, we introduced methane to treat hepatic I/R injury to show its promising protective effect. Also, intraperitoneal injection with methane-rich saline, which could have potential clinical applications, was applied as a new method. Partial liver warm ischemia was applied in Sprague-Dawley rats for 60 min followed by succedent reperfusion. In the test for effective dosage, methane-rich saline was administrated intraperitoneally to the rats at doses of 1, 5, 20, or 40 mL/kg at onset of reperfusion. In the test for protective effect, rats received methane-rich saline intraperitoneally at a dose of 10 mL/kg before the initiation of reperfusion. We found that methane-rich saline significantly decreased serum alanine aminotransferase, aspartate aminotransferase activity, and the occurrence of necrosis. Moreover, methane-rich saline reduced the amount of caspase-3 and the number of apoptotic cells. In addition, methane-rich saline increased the level of superoxide dismutase and decreased the level of malondialdehyde and 8-hydroxyguanosine. Furthermore, research indicated that methane-rich saline markedly decreased gene expression and content of tumor necrosis factor-α and interleukin-6. Also, reduced CD68-positive cells showed decreased inflammatory cells in the liver. Our results suggest that methane protects the liver against I/R injury through antiapoptotic, antioxidative, and anti-inflammatory actions.


Assuntos
Anti-Inflamatórios/química , Antioxidantes/química , Apoptose , Fígado/patologia , Metano/química , Traumatismo por Reperfusão/tratamento farmacológico , Alanina Transaminase/sangue , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Aspartato Aminotransferases/sangue , Caspase 3/metabolismo , Relação Dose-Resposta a Droga , Guanosina/análogos & derivados , Guanosina/metabolismo , Fígado/metabolismo , Masculino , Malondialdeído/metabolismo , Metano/administração & dosagem , Necrose/patologia , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo , Isquemia Quente
10.
J Hepatol ; 61(5): 1048-55, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24972044

RESUMO

BACKGROUND & AIMS: Hepatic ischemia and reperfusion (I/R) injury is a major complication of liver transplantation, hepatic resection and trauma. Helium preconditioning (HPC) exerts protection against ischemic stress. We investigated potential beneficial effects of HPC on I/R-induced liver injury and investigated mechanisms underlying HPC-induced protection. METHODS: We employed a model of segmental warm hepatic I/R on BALB/c mice. Serum ALT was measured and livers were analysed by histology, RT-PCR and western blot. HPC was induced by inhalation of a 70% helium/30% oxygen mixture for three 5-min periods, interspersed with three 5-min washout periods by room air. We tested which component of HPC (the helium/air mixture inhalation, the air room gap, or the interaction between these two factors) is protective. RESULTS: We found that HPC caused a significant increase in Akt phosphorylation in hepatocytes. The HPC-induced Akt phosphorylation resulted in decreased hepatocellular injury and improved survival rate of the treated animals. PI3K inhibitors abolished HPC induced effects. HPC-induced Akt phosphorylation affected expression of its downstream molecules. The effects of HPC on the PI3K/Akt pathway were attenuated by adenosine A2A receptor blockade, but could be re-established by PTEN inhibition. We demonstrated that the interaction of helium/air breathing and air gaps is responsible for the observed effects of HPC. CONCLUSIONS: HPC may be a promising strategy leading to a decrease in I/R induced liver injury in clinical settings. Additionally, the PI3K/Akt pathway plays an essential role in the protective effects of HPC in hepatic I/R injury.


Assuntos
Hélio/uso terapêutico , Precondicionamento Isquêmico/métodos , Transplante de Fígado , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Condicionamento Pré-Transplante/métodos , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Fígado/efeitos dos fármacos , Fígado/lesões , Fígado/metabolismo , Transplante de Fígado/efeitos adversos , Transplante de Fígado/métodos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , PTEN Fosfo-Hidrolase/antagonistas & inibidores , Fosforilação , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais , Triazinas/farmacologia , Triazóis/farmacologia , Isquemia Quente
11.
Undersea Hyperb Med ; 40(6): 505-11, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24377193

RESUMO

This study was undertaken to investigate the effect of edaravone inhalation on inflammasome activation in a rat hyperoxia-induced lung injury (HILI) model. Sprague Dawley rats (n = 61) were randomly assigned into three groups: Control group, HILI group and Edaravone (Eda) group. Rats in the Control group breathed room air, but those in the HILI group and Eda group were exposed to pure oxygen at 2.5 atmospheres absolute (atm abs) for six hours. Immediately after HILI, rats in the Eda group received inhalation of aerosol edaravone at 0.5 mg/ml for 30 minutes. Twenty-four hours later, rats were sacrificed. The bronchoalveolar lavage fluid (BALF) and lungs were obtained for detection of oxidative stress, IL-1beta, IL-18 and caspase-1; the lungs were collected for HE staining and TUNEL staining. The pathological features of the lungs of rats in the Eda group were significantly improved when compared with the HILI group, accompanied by reduction in apoptotic cells. In addition, in the Eda group, the malonyldialdehyde (MDA) was reduced and total antioxidant capacity (T-AOC) was increased significantly in the lung and BALF when compared with the HILI group (P < 0.05 for both). Moreover, the contents of IL-1beta, IL-18 and caspase-1 in the lung and BALF, downstream factors of inflammasome, were also dramatically lower in the Eda group than in the HILI group (P < 0.05 for all). These findings suggest that edaravone may inhibit inflammasome activation due to its anti-oxidative capacity exerting a protective effect on HILI.


Assuntos
Antipirina/análogos & derivados , Sequestradores de Radicais Livres/administração & dosagem , Hiperóxia/complicações , Lesão Pulmonar/metabolismo , Espécies Reativas de Oxigênio , Receptores Citoplasmáticos e Nucleares/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Antipirina/administração & dosagem , Apoptose , Água Corporal , Líquido da Lavagem Broncoalveolar/química , Proteínas de Transporte , Caspase 1/análise , Modelos Animais de Doenças , Edaravone , Oxigenoterapia Hiperbárica/efeitos adversos , Interleucina-18/análise , Interleucina-1beta/análise , Pulmão/química , Pulmão/patologia , Lesão Pulmonar/etiologia , Lesão Pulmonar/patologia , Lesão Pulmonar/prevenção & controle , Masculino , Malondialdeído/análise , Proteína 3 que Contém Domínio de Pirina da Família NLR , Estresse Oxidativo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Receptores Citoplasmáticos e Nucleares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA