Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
ACS Infect Dis ; 10(3): 858-869, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-37897418

RESUMO

SARS-CoV-2 nsp14 functions both as an exoribonuclease (ExoN) together with its critical cofactor nsp10 and as an S-adenosyl methionine-dependent (guanine-N7) methyltransferase (MTase), which makes it an attractive target for the development of pan-anti-SARS-CoV-2 drugs. Herein, we screened a panel of compounds (and drugs) and found that certain compounds, especially Bi(III)-based compounds, could allosterically inhibit both MTase and ExoN activities of nsp14 potently. We further demonstrated that Bi(III) binds to both nsp14 and nsp10, resulting in the release of Zn(II) ions from the enzymes as well as alternation of protein quaternary structures. The in vitro activities of the compounds were also validated in SARS-CoV-2-infected mammalian cells. Importantly, we showed that nsp14 serves as an authentic target of Bi(III)-based antivirals in SARS-CoV-2-infected mammalian cells by quantification of both the protein and inhibitor. This study highlights the importance of nsp14/nsp10 as a potential target for the development of pan-antivirals against SARS-CoV-2 infection.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/metabolismo , Metiltransferases/metabolismo , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Antivirais/farmacologia , Mamíferos/metabolismo
2.
Biol Res Nurs ; 26(1): 150-159, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37616306

RESUMO

Introduction: To explore the relationship between the composite dietary antioxidant index (CDAI) and gout to provide support for preventing gout through dietary intervention. Methods: Eligible participants from the 2007 to 2018 National Health and Nutrition Examination Survey aged 20 years and older were included in this cross-sectional study. The weighted chi-square test was used to compare the categorical variables difference between CDAI quartiles groups. The weighted univariate and binary logistic regression analysis were used to test the association between variables and gout. The weighted multivariable logistic regression was used to test the association of CDAI and gout in 4 different models. Subgroup analysis on the associations of CDAI with gout was conducted with stratified factors. Results: The final participants were 26,117, 13,103 (50.17%) were female, 8718 (33.38%) were 40-59 years, 11,200 (42.88%) were white and 1232 (4.72%) had gout. After adjusting for all covariates, the CDAI was associated with gout (odds ratio (OR), .97; 95% CI: .95-1.00). Participants in the highest CDAI quantile group were at low risk of gout (odds ratio (OR), .65; 95% CI: .50-.84) versus those in the lowest quantile group. Subgroup analysis and interaction test showed no significant dependence on diabetes mellitus (DM), marital status, alcohol status, hypertension, poverty income ratio (PIR), education level, body mass index (BMI), smoke status, age, sex, race, and chronic kidney disease (CKD) on this association (all p for interaction >.05). Conclusions: Composite dietary antioxidant index was inversely associated with gout in US adults, and dietary antioxidant intervention might be a promising method in the therapy of gout and greater emphasis should be placed on zinc, selenium, carotenoids, vitamins A, C, and E.


Assuntos
Antioxidantes , Gota , Adulto , Humanos , Feminino , Masculino , Inquéritos Nutricionais , Estudos Transversais , Dieta
3.
Cell Biosci ; 13(1): 74, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072871

RESUMO

BACKGROUND: Cholesterol plays a vital role in multiple physiological processes. Cellular uptake of cholesterol is mediated primarily through endocytosis of low-density lipoprotein (LDL) receptor. New modifiers of this process remain to be characterized. Particularly, the role of fasting- and CREB-H-induced (FACI) protein in cholesterol homeostasis merits further investigation. METHODS: Interactome profiling by proximity labeling and affinity purification - mass spectrometry was performed. Total internal reflection fluorescence microscopy and confocal immunofluorescence microscopy were used to analyze protein co-localization and interaction. Mutational analysis was carried out to define the domain and residues required for FACI localization and function. Endocytosis was traced by fluorescent cargos. LDL uptake in cultured cells and diet-induced hypercholesterolemia in mice were assessed. RESULTS: FACI interacted with proteins critically involved in clathrin-mediated endocytosis, vesicle trafficking, and membrane cytoskeleton. FACI localized to clathrin-coated pits (CCP) on plasma membranes. FACI contains a conserved DxxxLI motif, which mediates its binding with the adaptor protein 2 (AP2) complex. Disruption of this motif of FACI abolished its CCP localization but didn't affect its association with plasma membrane. Cholesterol was found to facilitate FACI transport from plasma membrane to endocytic recycling compartment in a clathrin- and cytoskeleton-dependent manner. LDL endocytosis was enhanced in FACI-overexpressed AML12 cells but impaired in FACI-depleted HeLa cells. In vivo study indicated that hepatic FACI overexpression alleviated diet-induced hypercholesterolemia in mice. CONCLUSIONS: FACI facilitates LDL endocytosis through its interaction with the AP2 complex.

4.
BMC Cancer ; 23(1): 307, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37016301

RESUMO

BACKGROUND: The kinesin-13 family member 2C (KIF2C) is a versatile protein participating in many biological processes. KIF2C is frequently up-regulated in multiple types of cancer and is associated with cancer development. However, the role of KIF2C in immune cell infiltration of tumor microenvironment and immunotherapy in breast cancer remains unclear. METHODS: The expression of KIF2C was analyzed using Tumor Immune Estimation Resource (TIMER) database and further verified by immunohistochemical staining in human breast cancer tissues. The correlation between KIF2C expression and clinical parameters, the impact of KIF2C on clinical prognosis and independent prognostic factors were analyzed by using TCGA database, the Kaplan-Meier plotter, and Univariate and multivariate Cox analyses, respectively. The nomograms were constructed according to independent prognostic factors and validated with C-index, calibration curves, ROC curves, and decision curve analysis. A gene set enrichment analysis (GSEA) was performed to explore the underlying molecular mechanisms of KIF2C. The degree of immune infiltration was assessed by the Estimation of Stromal and Immune cells in Malignant Tumor tissues using the Expression (ESTIMATE) algorithm and the single sample GSEA (ssGSEA). The Tumor mutational burden and Tumor Immune Dysfunction and Rejection (TIDE) were used to analyze immunotherapeutic efficiency. Finally, the KIF2C-related competing endogenous RNA (ceRNA) network was constructed to predict the putative regulatory mechanisms of KIF2C. RESULTS: KIF2C was remarkably up-regulated in 18 different types of cancers, including breast cancer. Kaplan-Meier survival analysis showed that high KIF2C expression was associated with poor overall survival (OS). KIF2C expression was associated with clinical parameters such as age, TMN stage, T status, and molecular subtypes. We identified age, stage, estrogen receptor (ER) and KIF2C expression as OS-related independent prognosis factors for breast cancer. An OS-related nomogram was developed based on these independent prognosis factors and displayed good predicting ability for OS of breast cancer patients. Finally, our results revealed that KIF2C was significantly related to immune cell infiltration, tumor mutational burden, and immunotherapy in patients with breast cancer. CONCLUSION: KIF2C was overexpressed in breast cancer and was positively correlated with immune cell infiltration and immunotherapy response. Therefore, KIF2C can serve as a potential biomarker for prognosis and immunotherapy in breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Prognóstico , Receptores de Estrogênio , Mama , Algoritmos , Microambiente Tumoral , Cinesinas/genética
5.
J Hazard Mater ; 443(Pt B): 130299, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36356526

RESUMO

Antibiotic residues cause increasing concern in environmental ecology and public health, which needs efficient analysis strategy for monitoring and control. In this study, a fast, specific, and ultrasensitive sensor based on field-effect transistor (FET) has been proposed for the detection of ampicillin (AMP). The sensor involves monolayer tungsten disulfide (WS2) nanosheet as the sensing channel, single-stranded DNA (ssDNA) as the sensing probe, and gold nanoparticle (Au NP) as the linker. The WS2/Au/ssDNA FET sensor responds rapidly to AMP in a wide linear detection range (10-12-10-6 M) and has low limit of detection (0.556 pM), which meets the permissible standards of AMP in water and food. The sensing mechanism study suggests that the excellent sensor response results from the increased number of negative charges in the Debye length and the consequent accumulation of holes in WS2 channel after the addition of AMP. Moreover, satisfactory sensing performance was confirmed in real water samples, indicating the potential application of the proposed method in practical AMP detection. The reported FET sensing strategy provides new insights in antibiotic analysis for risk assessment and control.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Antibacterianos/química , Ouro/química , Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , Água , Monofosfato de Adenosina
6.
J Clin Nurs ; 32(5-6): 894-900, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35934867

RESUMO

AIMS AND OBJECTIVES: This study investigated the relationship between frailty and diabetes complicated with comorbidities. BACKGROUND: Frailty is a common geriatric syndrome, and older adults with diabetes are prone to frailty. Patients with diabetes and comorbidities might be at increased risk of developing frailty. DESIGN: A multicenter cross-sectional study. METHODS: A cross-sectional study was conducted to identify older patients with diabetes and comorbidities in the internal medicine departments of five tertiary general hospitals in Sichuan Province, China, from March 2020 to June 2021. We used the FRAIL scale to identify frailty, and multinomial logistic regression was used to compare sociodemographic characteristics and comorbidities of frail or pre-frail participants with robust participants. The STROBE checklist was used for this cross-sectional study. RESULTS: A total of 1652 patients (883 males, 53.5%) were included, and the prevalence of frailty was 26.5%. Multinomial logistic regression analysis revealed that compared with robust patients, diabetic patients with hypertension, coronary heart disease, chronic cardiac failure, COPD, cerebrovascular diseases, osteoarticular diseases, chronic renal diseases, chronic gastrointestinal diseases and cancer were more likely to be frail. In addition, patients who engaged in less exercise, presented more comorbidities, were older and had lower education levels, were more prone to frailty. CONCLUSION: There was a clear correlation between diabetes complicated with comorbidities and the development of frailty. Appropriate personalised care levels for patients with diabetes and comorbidities, and early screening for frailty might reduce the prevalence of frailty in these patients. RELEVANCE TO CLINICAL PRACTICE: This study provided information for healthcare providers to identify circumstances that increase the risk of frailty and more effectively support patients with diabetes and comorbidities.


Assuntos
Diabetes Mellitus , Fragilidade , Masculino , Idoso , Humanos , Fragilidade/complicações , Fragilidade/epidemiologia , Fragilidade/diagnóstico , Estudos Transversais , Idoso Fragilizado , Comorbidade , Diabetes Mellitus/epidemiologia , Avaliação Geriátrica , Prevalência
7.
Pharmaceuticals (Basel) ; 15(9)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36145288

RESUMO

Enterovirus A71 (EV-A71) infection is a major cause of hand, foot, and mouth disease (HFMD), which may be occasionally associated with severe neurological complications. There is currently a lack of treatment options for EV-A71 infection. The Raf-MEK-ERK signaling pathway, in addition to its critical importance in the regulation of cell growth, differentiation, and survival, has been shown to be essential for virus replication. In this study, we investigated the anti-EV-A71 activity of vemurafenib, a clinically approved B-Raf inhibitor used in the treatment of late-stage melanoma. Vemurafenib exhibits potent anti-EV-A71 effect in cytopathic effect inhibition and viral load reduction assays, with half maximal effective concentration (EC50) at nanomolar concentrations. Mechanistically, vemurafenib interrupts both EV-A71 genome replication and assembly. These findings expand the list of potential antiviral candidates of anti-EV-A71 therapeutics.

8.
Protein Cell ; 13(12): 940-953, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35384604

RESUMO

The emergence of SARS-CoV-2 variants of concern and repeated outbreaks of coronavirus epidemics in the past two decades emphasize the need for next-generation pan-coronaviral therapeutics. Drugging the multi-functional papain-like protease (PLpro) domain of the viral nsp3 holds promise. However, none of the known coronavirus PLpro inhibitors has been shown to be in vivo active. Herein, we screened a structurally diverse library of 50,080 compounds for potential coronavirus PLpro inhibitors and identified a noncovalent lead inhibitor F0213 that has broad-spectrum anti-coronaviral activity, including against the Sarbecoviruses (SARS-CoV-1 and SARS-CoV-2), Merbecovirus (MERS-CoV), as well as the Alphacoronavirus (hCoV-229E and hCoV-OC43). Importantly, F0213 confers protection in both SARS-CoV-2-infected hamsters and MERS-CoV-infected human DPP4-knockin mice. F0213 possesses a dual therapeutic functionality that suppresses coronavirus replication via blocking viral polyprotein cleavage, as well as promoting antiviral immunity by antagonizing the PLpro deubiquitinase activity. Despite the significant difference of substrate recognition, mode of inhibition studies suggest that F0213 is a competitive inhibitor against SARS2-PLpro via binding with the 157K amino acid residue, whereas an allosteric inhibitor of MERS-PLpro interacting with its 271E position. Our proof-of-concept findings demonstrated that PLpro is a valid target for the development of broad-spectrum anti-coronavirus agents. The orally administered F0213 may serve as a promising lead compound for combating the ongoing COVID-19 pandemic and future coronavirus outbreaks.


Assuntos
Proteases Semelhantes à Papaína de Coronavírus , SARS-CoV-2 , Animais , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Cricetinae , Humanos , Camundongos , Pandemias , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Tratamento Farmacológico da COVID-19
9.
Cell Mol Immunol ; 19(5): 588-601, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35352010

RESUMO

Live attenuated vaccines might elicit mucosal and sterilizing immunity against SARS-CoV-2 that the existing mRNA, adenoviral vector and inactivated vaccines fail to induce. Here, we describe a candidate live attenuated vaccine strain of SARS-CoV-2 in which the NSP16 gene, which encodes 2'-O-methyltransferase, is catalytically disrupted by a point mutation. This virus, designated d16, was severely attenuated in hamsters and transgenic mice, causing only asymptomatic and nonpathogenic infection. A single dose of d16 administered intranasally resulted in sterilizing immunity in both the upper and lower respiratory tracts of hamsters, thus preventing viral spread in a contact-based transmission model. It also robustly stimulated humoral and cell-mediated immune responses, thus conferring full protection against lethal challenge with SARS-CoV-2 in a transgenic mouse model. The neutralizing antibodies elicited by d16 effectively cross-reacted with several SARS-CoV-2 variants. Secretory immunoglobulin A was detected in the blood and nasal wash of vaccinated mice. Our work provides proof-of-principle evidence for harnessing NSP16-deficient SARS-CoV-2 for the development of live attenuated vaccines and paves the way for further preclinical studies of d16 as a prototypic vaccine strain, to which new features might be introduced to improve safety, transmissibility, immunogenicity and efficacy.


Assuntos
COVID-19 , SARS-CoV-2 , Administração Intranasal , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Cricetinae , Camundongos , Camundongos Transgênicos , Glicoproteína da Espícula de Coronavírus , Vacinas Atenuadas/genética
10.
Cell Mol Gastroenterol Hepatol ; 13(5): 1365-1391, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35093589

RESUMO

BACKGROUND & AIMS: CREB-H is a key liver-enriched transcription factor governing lipid metabolism. Additional targets of CREB-H remain to be identified and characterized. Here, we identified a novel fasting- and CREB-H-induced (FACI) protein that inhibits intestinal lipid absorption and alleviates diet-induced obesity in mice. METHODS: FACI was identified by reanalysis of existing transcriptomic data. Faci-/- mice were generated by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9)-mediated genome engineering. RNA sequencing was performed to identify differentially expressed genes in Faci-/- mice. Lipid accumulation in the villi was assessed by triglyceride measurement and Oil red O staining. In vitro fatty acid uptake assay was performed to verify in vivo findings. RESULTS: FACI expression was enriched in liver and intestine. FACI is a phospholipid-binding protein that localizes to plasma membrane and recycling endosomes. Hepatic transcription of Faci was regulated by not only CREB-H, but also nutrient-responsive transcription factors sterol regulatory element-binding protein 1 (SREBP1), hepatocyte nuclear factor 4α (HNF4α), peroxisome proliferator-activated receptor γ coactivator-1α (PGC1α), and CREB, as well as fasting-related cyclic adenosine monophosphate (cAMP) signaling. Genetic knockout of Faci in mice showed an increase in intestinal fat absorption. In accordance with this, Faci deficiency aggravated high-fat diet-induced obesity, hyperlipidemia, steatosis, and other obesity-related metabolic dysfunction in mice. CONCLUSIONS: FACI is a novel CREB-H-induced protein. Genetic disruption of Faci in mice showed its inhibitory effect on fat absorption and obesity. Our findings shed light on a new target of CREB-H implicated in lipid homeostasis.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Fígado , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Dieta Hiperlipídica/efeitos adversos , Lipídeos , Fígado/metabolismo , Camundongos , Obesidade/metabolismo
11.
Viruses ; 13(10)2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34696477

RESUMO

Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne bunyavirus in Asia that causes severe disease. Despite its clinical importance, treatment options for SFTSV infection remains limited. The SFTSV glycoprotein Gn plays a major role in mediating virus entry into host cells and is therefore a potential antiviral target. In this study, we employed an in silico structure-based strategy to design novel cyclic antiviral peptides that target the SFTSV glycoprotein Gn. Among the cyclic peptides, HKU-P1 potently neutralizes the SFTSV virion. Combinatorial treatment with HKU-P1 and the broad-spectrum viral RNA-dependent RNA polymerase inhibitor favipiravir exhibited synergistic antiviral effects in vitro. The in silico peptide design platform in this study may facilitate the generation of novel antiviral peptides for other emerging viruses.


Assuntos
Peptídeos/farmacologia , Phlebovirus/efeitos dos fármacos , Febre Grave com Síndrome de Trombocitopenia/tratamento farmacológico , Antivirais/farmacologia , Infecções por Bunyaviridae/virologia , Linhagem Celular , Linhagem Celular Tumoral , Simulação por Computador , Hong Kong , Humanos , Orthobunyavirus/patogenicidade , Phlebovirus/patogenicidade , Febre Grave com Síndrome de Trombocitopenia/metabolismo , Febre Grave com Síndrome de Trombocitopenia/virologia , Trombocitopenia/virologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus/efeitos dos fármacos
12.
Emerg Microbes Infect ; 10(1): 1024-1037, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33979266

RESUMO

Zika virus (ZIKV) is an emerging mosquito-borne flavivirus that poses significant threats to global public health. Macrophages and dendritic cells are both key sentinel cells in the host immune response and play critical roles in the pathogenesis of flavivirus infections. Recent studies showed that ZIKV could productively infect monocyte-derived dendritic cells (moDCs), but the role of macrophages in ZIKV infection remains incompletely understood. In this study, we first compared ZIKV infection in monocyte-derived macrophages (MDMs) and moDCs derived from the same donors. We demonstrated that while both MDMs and moDCs were susceptible to epidemic (Puerto Rico) and pre-epidemic (Uganda) strains of ZIKV, virus replication was largely restricted in MDMs but not in moDCs. ZIKV induced significant apoptosis in moDCs but not MDMs. The restricted virus replication in MDMs was not due to inefficient virus entry but was related to post-entry events in the viral replication cycle. In stark contrast with moDCs, ZIKV failed to inhibit STAT1 and STAT2 phosphorylation in MDMs. This resulted in the lack of efficient antagonism of the host type I interferon-mediated antiviral responses. Importantly, depletion of STAT2 but not STAT1 in MDMs significantly rescued the replication of ZIKV and the prototype flavivirus yellow fever virus. Overall, our findings revealed a differential interplay between macrophages and dendritic cells with ZIKV. While dendritic cells may be exploited by ZIKV to facilitate virus replication, macrophages restricted ZIKV infection.


Assuntos
Células Dendríticas/virologia , Macrófagos/virologia , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT2/metabolismo , Zika virus/fisiologia , Animais , Linhagem Celular , Chlorocebus aethiops , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Técnicas de Inativação de Genes , Humanos , Interferon Tipo I/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Fosforilação , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT2/genética , Células Vero , Replicação Viral , Infecção por Zika virus/metabolismo
13.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33903235

RESUMO

Since the commercialization of transgenic glyphosate-tolerant (GT) crops in the mid-1990s, glyphosate has become the dominant herbicide to control weeds in corn, soybean, and other crops in the United States and elsewhere. However, recent public concerns over its potential carcinogenicity in humans have generated calls for glyphosate-restricting policies. Should a policy to restrict glyphosate use, such as a glyphosate tax, be implemented? The decision involves two types of tradeoffs: human health and environmental (HH-E) impacts versus market economic impacts, and the use of glyphosate versus alternative herbicides, where the alternatives potentially have more serious adverse HH-E effects. Accounting for farmers' weed management choices, we provide empirical evaluation of the HH-E welfare and market economic welfare effects of a glyphosate use restriction policy on US corn production. Under a glyphosate tax, farmers would substitute glyphosate for a combination of other herbicides. Should a 10% glyphosate tax be imposed, then the most conservative welfare estimate is a net HH-E welfare gain with a monetized value of US$6 million per annum but also a net market economic loss of US$98 million per annum in the United States, which translates into a net loss in social welfare. This result of overall welfare loss is robust to a wide range of tax rates considered, from 10 to 50%, and to multiple scenarios of glyphosate's HH-E effects, which are the primary sources of uncertainties about glyphosate's effects.


Assuntos
Produtos Agrícolas/efeitos dos fármacos , Glicina/análogos & derivados , Resistência a Herbicidas/genética , Zea mays/crescimento & desenvolvimento , Animais , Glicina/efeitos adversos , Glicina/economia , Herbicidas/efeitos adversos , Herbicidas/farmacologia , Humanos , Plantas Daninhas/efeitos dos fármacos , Plantas Geneticamente Modificadas/efeitos dos fármacos , Estados Unidos , Controle de Plantas Daninhas/normas , Zea mays/efeitos dos fármacos , Glifosato
14.
Int J Biol Sci ; 17(6): 1555-1564, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33907519

RESUMO

The Coronavirus Disease 2019 (COVID-19) pandemic caused by the novel lineage B betacoroanvirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in significant mortality, morbidity, and socioeconomic disruptions worldwide. Effective antivirals are urgently needed for COVID-19. The main protease (Mpro) of SARS-CoV-2 is an attractive antiviral target because of its essential role in the cleavage of the viral polypeptide. In this study, we performed an in silico structure-based screening of a large chemical library to identify potential SARS-CoV-2 Mpro inhibitors. Among 8,820 compounds in the library, our screening identified trichostatin A, a histone deacetylase inhibitor and an antifungal compound, as an inhibitor of SARS-CoV-2 Mpro activity and replication. The half maximal effective concentration of trichostatin A against SARS-CoV-2 replication was 1.5 to 2.7µM, which was markedly below its 50% effective cytotoxic concentration (75.7µM) and peak serum concentration (132µM). Further drug compound optimization to develop more stable analogues with longer half-lives should be performed. This structure-based drug discovery platform should facilitate the identification of additional enzyme inhibitors of SARS-CoV-2.


Assuntos
Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Proteases/farmacologia , Animais , Células CACO-2 , Chlorocebus aethiops , Simulação por Computador , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteases/química , Células Vero
15.
Nature ; 593(7859): 418-423, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33727703

RESUMO

The COVID-19 pandemic is the third outbreak this century of a zoonotic disease caused by a coronavirus, following the emergence of severe acute respiratory syndrome (SARS) in 20031 and Middle East respiratory syndrome (MERS) in 20122. Treatment options for coronaviruses are limited. Here we show that clofazimine-an anti-leprosy drug with a favourable safety profile3-possesses inhibitory activity against several coronaviruses, and can antagonize the replication of SARS-CoV-2 and MERS-CoV in a range of in vitro systems. We found that this molecule, which has been approved by the US Food and Drug Administration, inhibits cell fusion mediated by the viral spike glycoprotein, as well as activity of the viral helicase. Prophylactic or therapeutic administration of clofazimine in a hamster model of SARS-CoV-2 pathogenesis led to reduced viral loads in the lung and viral shedding in faeces, and also alleviated the inflammation associated with viral infection. Combinations of clofazimine and remdesivir exhibited antiviral synergy in vitro and in vivo, and restricted viral shedding from the upper respiratory tract. Clofazimine, which is orally bioavailable and comparatively cheap to manufacture, is an attractive clinical candidate for the treatment of outpatients and-when combined with remdesivir-in therapy for hospitalized patients with COVID-19, particularly in contexts in which costs are an important factor or specialized medical facilities are limited. Our data provide evidence that clofazimine may have a role in the control of the current pandemic of COVID-19 and-possibly more importantly-in dealing with coronavirus diseases that may emerge in the future.


Assuntos
Antivirais/farmacologia , Clofazimina/farmacologia , Coronavirus/classificação , Coronavirus/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/uso terapêutico , Alanina/análogos & derivados , Alanina/farmacologia , Alanina/uso terapêutico , Animais , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antivirais/farmacocinética , Antivirais/uso terapêutico , Disponibilidade Biológica , Fusão Celular , Linhagem Celular , Clofazimina/farmacocinética , Clofazimina/uso terapêutico , Coronavirus/crescimento & desenvolvimento , Coronavirus/patogenicidade , Cricetinae , DNA Helicases/antagonistas & inibidores , Sinergismo Farmacológico , Feminino , Humanos , Estágios do Ciclo de Vida/efeitos dos fármacos , Masculino , Mesocricetus , Profilaxia Pré-Exposição , SARS-CoV-2/crescimento & desenvolvimento , Especificidade da Espécie , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética
16.
Nanoscale ; 13(12): 5937-5953, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33650605

RESUMO

Self-assembly at water-oil interfaces has been shown to be a cheap, convenient and efficient route to obtain densely packed layers of plasmonic nanoparticles which have small interparticle distances. This creates highly plasmonically active materials that can be used to give strong SERS enhancement and whose structure means that they are well suited to creating the highly stable, reproducible and uniform substrates that are needed to allow routine and accurate quantitative SERS measurements. A variety of methods have been developed to induce nanoparticle self-assembly at water-oil interfaces, fine tune the surface chemistry and adjust the position of the nanoparticles at the interface but only some of these are compatible with eventual use in SERS, where it is important that target molecules can access the active surface unimpeded. Similarly, it is useful to transform liquid plasmonic arrays into easy-to-handle free-standing solid films but these can only be used as solid SERS substrates if the process leaves the surface nanoparticles exposed. Here, we review the progress made in these research areas and discuss how these developments may lead towards achieving rational construction of tailored SERS substrates for sensitive and quantitative SERS analysis.

17.
Emerg Microbes Infect ; 10(1): 291-304, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33538646

RESUMO

Effective treatments for coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are urgently needed. Dexamethasone has been shown to confer survival benefits to certain groups of hospitalized patients, but whether glucocorticoids such as dexamethasone and methylprednisolone should be used together with antivirals to prevent a boost of SARS-CoV-2 replication remains to be determined. Here, we show the beneficial effect of methylprednisolone alone and in combination with remdesivir in the hamster model of SARS-CoV-2 infection. Treatment with methylprednisolone boosted RNA replication of SARS-CoV-2 but suppressed viral induction of proinflammatory cytokines in human monocyte-derived macrophages. Although methylprednisolone monotherapy alleviated body weight loss as well as nasal and pulmonary inflammation, viral loads increased and antibody response against the receptor-binding domain of spike protein attenuated. In contrast, a combination of methylprednisolone with remdesivir not only prevented body weight loss and inflammation, but also dampened viral protein expression and viral loads. In addition, the suppressive effect of methylprednisolone on antibody response was alleviated in the presence of remdesivir. Thus, combinational anti-inflammatory and antiviral therapy might be an effective, safer and more versatile treatment option for COVID-19. These data support testing of the efficacy of a combination of methylprednisolone and remdesivir for the treatment of COVID-19 in randomized controlled clinical trials.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Metilprednisolona/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/uso terapêutico , Alanina/farmacologia , Alanina/uso terapêutico , Animais , Anticorpos Antivirais/sangue , Antivirais/farmacologia , COVID-19/patologia , COVID-19/virologia , Citocinas/biossíntese , Citocinas/imunologia , Modelos Animais de Doenças , Quimioterapia Combinada , Feminino , Humanos , Macrófagos/imunologia , Macrófagos/virologia , Masculino , Mesocricetus , Metilprednisolona/farmacologia , RNA Viral , Sistema Respiratório/patologia , Sistema Respiratório/virologia , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/imunologia , Carga Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
18.
Sci Adv ; 6(35): eaba7910, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32923629

RESUMO

Targeting a universal host protein exploited by most viruses would be a game-changing strategy that offers broad-spectrum solution and rapid pandemic control including the current COVID-19. Here, we found a common YxxØ-motif of multiple viruses that exploits host AP2M1 for intracellular trafficking. A library chemical, N-(p-amylcinnamoyl)anthranilic acid (ACA), was identified to interrupt AP2M1-virus interaction and exhibit potent antiviral efficacy against a number of viruses in vitro and in vivo, including the influenza A viruses (IAVs), Zika virus (ZIKV), human immunodeficiency virus, and coronaviruses including MERS-CoV and SARS-CoV-2. YxxØ mutation, AP2M1 depletion, or disruption by ACA causes incorrect localization of viral proteins, which is exemplified by the failure of nuclear import of IAV nucleoprotein and diminished endoplasmic reticulum localization of ZIKV-NS3 and enterovirus-A71-2C proteins, thereby suppressing viral replication. Our study reveals an evolutionarily conserved mechanism of protein-protein interaction between host and virus that can serve as a broad-spectrum antiviral target.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Antivirais/farmacologia , Cinamatos/farmacologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por HIV/tratamento farmacológico , Influenza Humana/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico , ortoaminobenzoatos/farmacologia , Células A549 , Animais , Betacoronavirus/efeitos dos fármacos , Sítios de Ligação/genética , COVID-19 , Linhagem Celular Tumoral , Chlorocebus aethiops , Infecções por Coronavirus/patologia , Cães , Células HEK293 , Infecções por HIV/patologia , HIV-1/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Vírus da Influenza A/efeitos dos fármacos , Influenza Humana/patologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Pandemias , Pneumonia Viral/patologia , Ligação Proteica/genética , Transporte Proteico/efeitos dos fármacos , RNA Viral/genética , Receptor de Interferon alfa e beta/genética , SARS-CoV-2 , Fator de Crescimento Transformador beta1/metabolismo , Células Vero , Replicação Viral/efeitos dos fármacos , Zika virus/efeitos dos fármacos , Infecção por Zika virus/patologia
19.
Analyst ; 145(19): 6211-6221, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32794527

RESUMO

Therapeutic drug monitoring (TDM) is important for many therapeutic regimens and has particular relevance for anticancer drugs which often have serious effects and whose optimum dosage can vary significantly between different patients. Many of the features of surface enhanced (resonance) Raman spectroscopy (SE(R)RS) suggest it should be very suitable for TDM of anticancer drugs and some initial studies which explore the potential of SE(R)RS for TDM of anticancer drugs have been published. This review brings this work together in an attempt to draw some general observations about key aspects of the approach, including the nature of the substrate used, matrix interference effects and factors governing adsorption of the target molecules onto the enhancing surface. There is now sufficient evidence to suggest that none of these pose real difficulties in the context of TDM. However, some issues, particularly the need to carry out multiplex measurements for TDM of combination therapies, have yet to be addressed.


Assuntos
Antineoplásicos , Monitoramento de Medicamentos , Adsorção , Humanos , Análise Espectral Raman , Vibração
20.
BMC Nephrol ; 21(1): 318, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32736541

RESUMO

BACKGROUND: Due to the high incidence and mortality of sepsis-associated acute kidney injury, a significant number of studies have explored the causes of sepsis-associated acute kidney injury (AKI). However, the opinions on relevant predictive risk factors remain inconclusive. This study aimed to provide a systematic review and meta-analysis to determine the predisposing factors for sepsis-associated AKI. METHOD: A systematic literature search was performed in the Medline, Embase, Cochrane Library, PubMed, and Web of Science, databases, with an end-date of 25th May 2019. Valid data were retrieved in compliance with specific inclusion and exclusion criteria. RESULT: Forty-seven observational studies were included for analysis, achieving a cumulative patient number of 55,911. The highest incidence of AKI was caused by septic shock. Thirty-one potential risk factors were included in the meta-analysis. Analysis showed that 20 factors were statistically significant. The odds ratio (OR) and 95% confidence interval (CI), as well as the prevalence of the most frequently-seen predisposing factors for sepsis-associated AKI, were as follows: septic shock [2.88 (2.36-3.52), 60.47%], hypertension [1.43 (1.20-1.70), 38.39%], diabetes mellitus [1.59 (1.47-1.71), 27.57%], abdominal infection [1.44 (1.32-1.58), 30.87%], the administration of vasopressors [2.95 (1.67-5.22), 64.61%], the administration of vasoactive drugs [3.85 (1.89-7.87), 63.22%], mechanical ventilation [1.64 (1.24-2.16), 68.00%], positive results from blood culture [1.60 (1.35-1.89), 41.19%], and a history of smoking [1.60 (1.09-2.36), 43.09%]. Other risk factors included cardiovascular diseases, coronary artery diseases, liver diseases, unknown infections, the administration of diuretics and ACEI/ARB, the infection caused by gram-negative bacteria, and organ transplantation. CONCLUSION: Risk factors of S-AKI arise from a wide range of sources, making it difficult to predict and prevent this condition. Comorbidities, and certain drugs, are the main risk factors for S-AKI. Our review can provide guidance on the application of interventions to reduce the risks associated with sepsis-associated acute kidney injury and can also be used to tailor patient-specific treatment plans and management strategies in clinical practice.


Assuntos
Injúria Renal Aguda/epidemiologia , Sepse/epidemiologia , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/mortalidade , Bacteriemia/epidemiologia , Hemocultura , Diabetes Mellitus/epidemiologia , Humanos , Hipertensão/epidemiologia , Infecções Intra-Abdominais/epidemiologia , Respiração Artificial/estatística & dados numéricos , Fatores de Risco , Sepse/complicações , Choque Séptico/complicações , Choque Séptico/epidemiologia , Fumar/epidemiologia , Vasoconstritores/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA