Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Gastroenterology ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39097198

RESUMO

BACKGROUND & AIMS: Metastases from gastric adenocarcinoma (GAC) lead to high morbidity and mortality. Developing innovative and effective therapies requires a comprehensive understanding of the tumor and immune biology of advanced GAC. Yet, collecting matched specimens from advanced, treatment-naïve patients with GAC poses a significant challenge, limiting the scope of current research, which has focused predominantly on localized tumors. This gap hinders deeper insight into the metastatic dynamics of GAC. METHODS: We performed in-depth single-cell transcriptome and immune profiling on 68 paired, treatment-naïve, primary metastatic tumors to delineate alterations in cancer cells and their tumor microenvironment during metastatic progression. To validate our observations, we conducted comprehensive functional studies both in vitro and in vivo, using cell lines and multiple patient-derived xenograft and novel mouse models of GAC. RESULTS: Liver and peritoneal metastases exhibited distinct properties in cancer cells and dynamics of tumor microenvironment phenotypes, supporting the notion that cancer cells and their local tumor microenvironments co-evolve at metastatic sites. Our study also revealed differential activation of cancer meta-programs across metastases. We observed evasion of cancer cell ferroptosis via GPX4 up-regulation during GAC progression. Conditional depletion of Gpx4 or pharmacologic inhibition of ferroptosis resistance significantly attenuated tumor growth and metastatic progression. In addition, ferroptosis-resensitizing treatments augmented the efficacy of chimeric antigen receptor T-cell therapy. CONCLUSIONS: This study represents the largest single-cell dataset of metastatic GACs to date. High-resolution mapping of the molecular and cellular dynamics of GAC metastasis has revealed a rationale for targeting ferroptosis defense in combination with chimeric antigen receptor T-cell therapy as a novel therapeutic strategy with potential immense clinical implications.

2.
Neurooncol Pract ; 11(4): 452-463, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39006528

RESUMO

Background: Melanoma leptomeningeal disease (LMD) has a poor prognosis. However, the management of patients with advanced melanoma has evolved with time, including those with LMD. We reviewed a large cohort of melanoma LMD patients to assess factors associated with survival. Methods: Retrospective clinical data was collected on patients diagnosed with LMD at MD Anderson Cancer Center from 2015 to 2020. Overall survival (OS) was determined from LMD diagnosis to date of death or last follow-up. The Kaplan-Meier method and log-rank test were used to estimate OS and to assess univariate group differences, respectively. Multivariable associations of survival with variables of interest were determined using Cox proportional hazards regression models. Results: A total of 172 patients were identified. The median age at LMD diagnosis was 53 (range 20-79) years, and all patients had radiographic evidence of LMD on magnetic resonance imaging of either brain or spine. In total 143 patients previously received systemic therapy (83%), with a median of 2 prior treatments (range 0-5). 81 patients (47%) had concurrent uncontrolled systemic disease and 80 patients (53%) had elevated serum LDH at the time of diagnosis. With a median follow-up of 4.0 months (range 0.1-65.3 months), median OS for all patients from LMD diagnosis was 4.9 months. Patients (n = 45) who received intrathecal therapy or systemic immunotherapy for LMD had a median OS of 8.0 months and 10.2 months, respectively. On multivariable analysis, decreased performance status, positive CSF cytology, elevated LDH, and whole brain radiation were associated with worse OS. Conclusions: Despite many advances in therapeutic options, the outcomes of melanoma patients with LMD remains poor. However, a subset of patients appears to derive benefit from LMD-directed treatment.

3.
J Clin Invest ; 134(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38618960

RESUMO

Merkel cell carcinoma (MCC) is an aggressive, fast-growing, highly metastatic neuroendocrine skin cancer. The Merkel cell polyomavirus (MCPyV) is an oncogenic driver in the majority of MCC tumors. In this issue of the JCI, Hansen and authors report on their tracking of CD8+ T cells reactive to MCPyV T antigen (T-Ag) in the peripheral blood of 26 patients with MCC who were undergoing frontline anti-programmed cell death protein-1 (anti-PD-1) immunotherapy. They discovered unique T cell epitopes and used the power of bar-coded tetramers to portray immune checkpoint inhibitor-induced immunogenicity as a predictor of clinical response. These findings provide the foundation for therapeutic possibilities for MCC, including vaccines and adoptive T cell- and T cell receptor-driven (TCR-driven) treatments.


Assuntos
Carcinoma de Célula de Merkel , Polyomavirus , Neoplasias Cutâneas , Humanos , Carcinoma de Célula de Merkel/terapia , Polyomavirus/genética , Neoplasias Cutâneas/terapia , Linfócitos T CD8-Positivos , Epitopos de Linfócito T
4.
ACS Biomater Sci Eng ; 10(3): 1448-1460, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38385283

RESUMO

T cells have the ability to recognize and kill specific target cells, giving therapies based on their potential for treating infection, diabetes, cancer, and other diseases. However, the advancement of T cell-based treatments has been hindered by difficulties in their ex vivo activation and expansion, the number of cells required for sustained in vivo levels, and preferential localization following systemic delivery. Biomaterials may help to overcome many of these challenges by providing a combined means of proliferation, antigen presentation, and cell localization upon delivery. In this work, we studied self-assembling Multidomain Peptides (MDPs) as scaffolds for T cell culture, activation, and expansion. We evaluated the effect of different MDP chemistries on their biocompatibility with T cells and the maintenance of antigen specificity for T cells cultured in the hydrogels. We also examined the potential application of MDPs as scaffolds for T cell activation and expansion and the effect of MDP encapsulation on T cell phenotype. We found high cell viability when T cells were encapsulated in noncationic MDPs, O5 and D2, and superior retention of antigen specificity and tumor-reactivity were preserved in the anionic MDP, D2. Maintenance of antigen recognition by T cells in D2 hydrogels was confirmed by quantifying immune synapses of T Cells engaged with antigen-presenting cancer cells. When 3D cultured in anionic MDP D2 coloaded with anti-CD3, anti-CD28, IL2, IL7, and IL15, we observed successful T cell proliferation evidenced by upregulation of CD27 and CD107a. This study is the first to investigate the potential of self-assembling peptide-based hydrogels as 3D scaffolds for human T cell applications and demonstrates that MDP hydrogels are a viable platform for enabling T cell in vitro activation, expansion, and maintenance of antigen specificity and therefore a promising tool for future T cell-based therapies.


Assuntos
Nanofibras , Neoplasias , Humanos , Hidrogéis/farmacologia , Hidrogéis/química , Linfócitos T , Peptídeos/química , Proliferação de Células
5.
CPT Pharmacometrics Syst Pharmacol ; 12(11): 1577-1590, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37448343

RESUMO

Autologous Chimeric antigen receptor (CAR-T) cell therapy has been highly successful in the treatment of aggressive hematological malignancies and is also being evaluated for the treatment of solid tumors as well as other therapeutic areas. A challenge, however, is that up to 60% of patients do not sustain a long-term response. Low CAR-T cell exposure has been suggested as an underlying factor for a poor prognosis. CAR-T cell therapy is a novel therapeutic modality with unique kinetic and dynamic properties. Importantly, "clear" dose-exposure relationships do not seem to exist for any of the currently approved CAR-T cell products. In other words, dose increases have not led to a commensurate increase in the measurable in vivo frequency of transferred CAR-T cells. Therefore, alternative approaches beyond dose titration are needed to optimize CAR-T cell exposure. In this paper, we provide examples of actionable variables - design elements in CAR-T cell discovery, development, and clinical practice, which can be modified to optimize autologous CAR-T cell exposure. Most of these actionable variables can be assessed throughout the various stages of discovery and development as part of a well-informed research and development program. Model-informed drug development approaches can enable such study and program design choices from discovery through to clinical practice and can be an important contributor to cell therapy effectiveness and efficiency.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos de Linfócitos T , Imunoterapia Adotiva , Linfócitos T
6.
Cancer Cell ; 41(8): 1407-1426.e9, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37419119

RESUMO

Understanding tumor microenvironment (TME) reprogramming in gastric adenocarcinoma (GAC) progression may uncover novel therapeutic targets. Here, we performed single-cell profiling of precancerous lesions, localized and metastatic GACs, identifying alterations in TME cell states and compositions as GAC progresses. Abundant IgA+ plasma cells exist in the premalignant microenvironment, whereas immunosuppressive myeloid and stromal subsets dominate late-stage GACs. We identified six TME ecotypes (EC1-6). EC1 is exclusive to blood, while EC4, EC5, and EC2 are highly enriched in uninvolved tissues, premalignant lesions, and metastases, respectively. EC3 and EC6, two distinct ecotypes in primary GACs, associate with histopathological and genomic characteristics, and survival outcomes. Extensive stromal remodeling occurs in GAC progression. High SDC2 expression in cancer-associated fibroblasts (CAFs) is linked to aggressive phenotypes and poor survival, and SDC2 overexpression in CAFs contributes to tumor growth. Our study provides a high-resolution GAC TME atlas and underscores potential targets for further investigation.


Assuntos
Adenocarcinoma , Fibroblastos Associados a Câncer , Lesões Pré-Cancerosas , Neoplasias Gástricas , Humanos , Ecótipo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Adenocarcinoma/patologia , Fibroblastos Associados a Câncer/patologia , Lesões Pré-Cancerosas/patologia , Células Estromais/patologia , Microambiente Tumoral
7.
Nat Med ; 29(6): 1550-1562, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37248301

RESUMO

Tumor-infiltrating T cells offer a promising avenue for cancer treatment, yet their states remain to be fully characterized. Here we present a single-cell atlas of T cells from 308,048 transcriptomes across 16 cancer types, uncovering previously undescribed T cell states and heterogeneous subpopulations of follicular helper, regulatory and proliferative T cells. We identified a unique stress response state, TSTR, characterized by heat shock gene expression. TSTR cells are detectable in situ in the tumor microenvironment across various cancer types, mostly within lymphocyte aggregates or potential tertiary lymphoid structures in tumor beds or surrounding tumor edges. T cell states/compositions correlated with genomic, pathological and clinical features in 375 patients from 23 cohorts, including 171 patients who received immune checkpoint blockade therapy. We also found significantly upregulated heat shock gene expression in intratumoral CD4/CD8+ cells following immune checkpoint blockade treatment, particularly in nonresponsive tumors, suggesting a potential role of TSTR cells in immunotherapy resistance. Our well-annotated T cell reference maps, web portal and automatic alignment/annotation tool could provide valuable resources for T cell therapy optimization and biomarker discovery.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Linfócitos do Interstício Tumoral , Neoplasias/genética , Neoplasias/terapia , Neoplasias/metabolismo , Imunoterapia , Microambiente Tumoral
9.
Nat Med ; 29(4): 898-905, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36997799

RESUMO

There is a critical need for effective treatments for leptomeningeal disease (LMD). Here, we report the interim analysis results of an ongoing single-arm, first-in-human phase 1/1b study of concurrent intrathecal (IT) and intravenous (IV) nivolumab in patients with melanoma and LMD. The primary endpoints are determination of safety and the recommended IT nivolumab dose. The secondary endpoint is overall survival (OS). Patients are treated with IT nivolumab alone in cycle 1 and IV nivolumab is included in subsequent cycles. We treated 25 patients with metastatic melanoma using 5, 10, 20 and 50 mg of IT nivolumab. There were no dose-limiting toxicities at any dose level. The recommended IT dose of nivolumab is 50 mg (with IV nivolumab 240 mg) every 2 weeks. Median OS was 4.9 months, with 44% and 26% OS rates at 26 and 52 weeks, respectively. These initial results suggest that concurrent IT and IV nivolumab is safe and feasible with potential efficacy in patients with melanoma LMD, including in patients who had previously received anti-PD1 therapy. Accrual to the study continues, including in patients with lung cancer. ClinicalTrials.gov registration: NCT03025256 .


Assuntos
Neoplasias Pulmonares , Melanoma , Humanos , Nivolumabe , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Melanoma/patologia , Neoplasias Pulmonares/tratamento farmacológico , Resultado do Tratamento , Ipilimumab
10.
JCI Insight ; 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36472921

RESUMO

Tertiary lymphoid structures (TLSs) are associated with anti-tumor response following immune checkpoint inhibitor (ICI) therapy, but a commensurate observation of TLS is absent for immune related adverse events (irAEs) i.e. acute interstitial nephritis (AIN). We hypothesized that TLS-associated inflammatory gene signatures are present in AIN and performed NanoString-based gene expression and multiplex 12-chemokine profiling on paired kidney tissue, urine and plasma specimens of 36 participants who developed acute kidney injury (AKI) on ICI therapy: AIN (18), acute tubular necrosis (9), or HTN nephrosclerosis (9). Increased T and B cell scores, a Th1-CD8+ T cell axis accompanied by interferon-g and TNF superfamily signatures were detected in the ICI-AIN group. TLS signatures were significantly increased in AIN cases and supported by histopathological identification. Furthermore, urinary TLS signature scores correlated with ICI-AIN diagnosis but not paired plasma. Urinary CXCL9 correlated best to tissue CXCL9 expression (rho 0.75, p < 0.001) and the ability to discriminate AIN vs. non-AIN (AUC 0.781, p-value 0.003). For the first time, we report the presence of TLS signatures in irAEs, define distinctive immune signatures, identify chemokine markers distinguishing ICI-AIN from common AKI etiologies and demonstrate that urine chemokine markers may be used as a surrogate for ICI-AIN diagnoses.

11.
NAR Cancer ; 4(4): zcac038, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36518525

RESUMO

Genetic screens are widely exploited to develop novel therapeutic approaches for cancer treatment. With recent advances in single-cell technology, single-cell CRISPR screen (scCRISPR) platforms provide opportunities for target validation and mechanistic studies in a high-throughput manner. Here, we aim to establish scCRISPR platforms which are suitable for immune-related screens involving multiple cell types. We integrated two scCRISPR platforms, namely Perturb-seq and CROP-seq, with both in vitro and in vivo immune screens. By leveraging previously generated resources, we optimized experimental conditions and data analysis pipelines to achieve better consistency between results from high-throughput and individual validations. Furthermore, we evaluated the performance of scCRISPR immune screens in determining underlying mechanisms of tumor intrinsic immune regulation. Our results showed that scCRISPR platforms can simultaneously characterize gene expression profiles and perturbation effects present in individual cells in different immune screen conditions. Results from scCRISPR immune screens also predict transcriptional phenotype associated with clinical responses to cancer immunotherapy. More importantly, scCRISPR screen platforms reveal the interactive relationship between targeting tumor intrinsic factors and T cell-mediated antitumor immune response which cannot be easily assessed by bulk RNA-seq. Collectively, scCRISPR immune screens provide scalable and reliable platforms to elucidate molecular determinants of tumor immune resistance.

12.
Oncoimmunology ; 11(1): 2124678, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36185804

RESUMO

Acute kidney injury (AKI) occurs in ~20% of patients receiving immune checkpoint inhibitor (ICI) therapy; however, only 2-5% will develop ICI-mediated immune nephritis. Conventional tests are nonspecific in diagnosing disease pathology and invasive procedures (i.e. kidney biopsy) may not be feasible. In other autoimmune renal diseases, urinary immune cells correlated with the pathology or were predictive of disease activity. Corresponding evidence and analysis are absent for ICI-mediated immune nephritis. We report the first investigation analyzing immune cell profiles of matched kidney biopsies and urine of patients with ICI-AKI. We demonstrated the presence of urinary T cells in patients with immune nephritis by flow cytometry analysis. Clonotype analysis of T cell receptor (TCR) sequences confirmed enrichment of kidney TCRs in urine. As ICI therapies become standard of care for more cancers, noninvasively assessing urinary immune cells of ICI therapy recipients can facilitate clinical management and an opportunity to tailor ICI-nephritis treatment.


Assuntos
Injúria Renal Aguda , Nefrite , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/tratamento farmacológico , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Rim/patologia , Nefrite/induzido quimicamente , Nefrite/diagnóstico , Nefrite/tratamento farmacológico , Linfócitos T
13.
Nat Commun ; 13(1): 5988, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36220826

RESUMO

Analyzing antigen-specific T cell responses at scale has been challenging. Here, we analyze three types of T cell receptor (TCR) repertoire data (antigen-specific TCRs, TCR-repertoire, and single-cell RNA + TCRαß-sequencing data) from 515 patients with primary or metastatic melanoma and compare it to 783 healthy controls. Although melanoma-associated antigen (MAA) -specific TCRs are restricted to individuals, they share sequence similarities that allow us to build classifiers for predicting anti-MAA T cells. The frequency of anti-MAA T cells distinguishes melanoma patients from healthy and predicts metastatic recurrence from primary melanoma. Anti-MAA T cells have stem-like properties and frequent interactions with regulatory T cells and tumor cells via Galectin9-TIM3 and PVR-TIGIT -axes, respectively. In the responding patients, the number of expanded anti-MAA clones are higher after the anti-PD1(+anti-CTLA4) therapy and the exhaustion phenotype is rescued. Our systems immunology approach paves the way for understanding antigen-specific responses in human disorders.


Assuntos
Receptor Celular 2 do Vírus da Hepatite A , Melanoma , Humanos , RNA , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética
14.
JCI Insight ; 7(12)2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35653194

RESUMO

Novel therapeutic strategies targeting glioblastoma (GBM) often fail in the clinic, partly because preclinical models in which hypotheses are being tested do not recapitulate human disease. To address this challenge, we took advantage of our previously developed spontaneous Qk/Trp53/Pten (QPP) triple-knockout model of human GBM, comparing the immune microenvironment of QPP mice with that of patient-derived tumors to determine whether this model provides opportunity for gaining insights into tumor physiopathology and preclinical evaluation of therapeutic agents. Immune profiling analyses and single-cell sequencing of implanted and spontaneous tumors from QPP mice and from patients with glioma revealed intratumoral immune components that were predominantly myeloid cells (e.g., monocytes, macrophages, and microglia), with minor populations of T, B, and NK cells. When comparing spontaneous and implanted mouse samples, we found more neutrophils and T and NK cells in the implanted model. Neutrophils and T and NK cells were increased in abundance in samples derived from human high-grade glioma compared with those derived from low-grade glioma. Overall, our data demonstrate that our implanted and spontaneous QPP models recapitulate the immunosuppressive myeloid-dominant nature of the tumor microenvironment of human gliomas. Our model provides a suitable tool for investigating the complex immune compartment of gliomas.


Assuntos
Glioblastoma , Glioma , Animais , Modelos Animais de Doenças , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Macrófagos , Camundongos , Microambiente Tumoral
15.
Cancer Cell ; 40(5): 509-523.e6, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35537412

RESUMO

Immune checkpoint blockade (ICB) therapy frequently induces immune-related adverse events. To elucidate the underlying immunobiology, we performed a deep immune analysis of intestinal, colitis, and tumor tissue from ICB-treated patients with parallel studies in preclinical models. Expression of interleukin-6 (IL-6), neutrophil, and chemotactic markers was higher in colitis than in normal intestinal tissue; T helper 17 (Th17) cells were more prevalent in immune-related enterocolitis (irEC) than T helper 1 (Th1). Anti-cytotoxic T-lymphocyte-associated antigen 4 (anti-CTLA-4) induced stronger Th17 memory in colitis than anti-program death 1 (anti-PD-1). In murine models, IL-6 blockade associated with improved tumor control and a higher density of CD4+/CD8+ effector T cells, with reduced Th17, macrophages, and myeloid cells. In an experimental autoimmune encephalomyelitis (EAE) model with tumors, combined IL-6 blockade and ICB enhanced tumor rejection while simultaneously mitigating EAE symptoms versus ICB alone. IL-6 blockade with ICB could de-couple autoimmunity from antitumor immunity.


Assuntos
Colite , Neoplasias , Animais , Colite/induzido quimicamente , Humanos , Fatores Imunológicos/uso terapêutico , Imunoterapia , Interleucina-6 , Camundongos , Células Mieloides , Neoplasias/tratamento farmacológico
16.
Nat Commun ; 13(1): 2127, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440620

RESUMO

Immunotherapy has emerged as a powerful approach to cancer treatment. However, immunotherapeutic resistance limits its clinical application. Therefore, identifying immune-resistant factors, which can be targeted by clinically available drugs and it also can be a companion diagnostic marker, is needed to develop combination strategies. Here, using the transcriptome data of patients, and immune-refractory tumor models, we identify TCTP as an immune-resistance factor that correlates with clinical outcome of anti-PD-L1 therapy and confers immune-refractory phenotypes, decreased T cell trafficking to the tumor and resistance to cytotoxic T lymphocyte-mediated tumor cell killing. Mechanistically, TCTP activates the EGFR-AKT-MCL-1/CXCL10 pathway by phosphorylation-dependent interaction with Na, K ATPase. Furthermore, treatment with dihydroartenimsinin, the most effective agent impending the TCTP-mediated-refractoriness, synergizes with T cell-mediated therapy to control immune-refractory tumors. Thus, our findings suggest a role of TCTP in promoting immune-refractoriness, thereby encouraging a rationale for combination therapies to enhance the efficacy of T cell-mediated therapy.


Assuntos
Antígeno B7-H1 , Imunoterapia , Linhagem Celular Tumoral , Terapia Combinada , Humanos , Fenótipo , Microambiente Tumoral
17.
Clin Cancer Res ; 28(9): 1911-1924, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35190823

RESUMO

PURPOSE: Adoptive cell therapy (ACT) of tumor-infiltrating lymphocytes (TIL) historically yields a 40%-50% response rate in metastatic melanoma. However, the determinants of outcome are largely unknown. EXPERIMENTAL DESIGN: We investigated tumor-based genomic correlates of overall survival (OS), progression-free survival (PFS), and response to therapy by interrogating tumor samples initially collected to generate TIL infusion products. RESULTS: Whole-exome sequencing (WES) data from 64 samples indicated a positive correlation between neoantigen load and OS, but not PFS or response to therapy. RNA sequencing analysis of 34 samples showed that expression of PDE1C, RTKN2, and NGFR was enriched in responders who had improved PFS and OS. In contrast, the expression of ELFN1 was enriched in patients with unfavorable response, poor PFS and OS, whereas enhanced methylation of ELFN1 was observed in patients with favorable outcomes. Expression of ELFN1, NGFR, and PDE1C was mainly found in cancer-associated fibroblasts and endothelial cells in tumor tissues across different cancer types in publicly available single-cell RNA sequencing datasets, suggesting a role for elements of the tumor microenvironment in defining the outcome of TIL therapy. CONCLUSIONS: Our findings suggest that transcriptional features of melanomas correlate with outcomes after TIL therapy and may provide candidates to guide patient selection.


Assuntos
Melanoma , Segunda Neoplasia Primária , Terapia Baseada em Transplante de Células e Tecidos , Células Endoteliais/patologia , Genômica , Humanos , Imunoterapia Adotiva , Linfócitos do Interstício Tumoral , Melanoma/genética , Melanoma/terapia , Segunda Neoplasia Primária/patologia , Microambiente Tumoral/genética
18.
Cancer Cell ; 40(1): 36-52.e9, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34822775

RESUMO

Reinvigoration of antitumor immunity remains an unmet challenge. Our retrospective analyses revealed that cancer patients who took antihistamines during immunotherapy treatment had significantly improved survival. We uncovered that histamine and histamine receptor H1 (HRH1) are frequently increased in the tumor microenvironment and induce T cell dysfunction. Mechanistically, HRH1-activated macrophages polarize toward an M2-like immunosuppressive phenotype with increased expression of the immune checkpoint VISTA, rendering T cells dysfunctional. HRH1 knockout or antihistamine treatment reverted macrophage immunosuppression, revitalized T cell cytotoxic function, and restored immunotherapy response. Allergy, via the histamine-HRH1 axis, facilitated tumor growth and induced immunotherapy resistance in mice and humans. Importantly, cancer patients with low plasma histamine levels had a more than tripled objective response rate to anti-PD-1 treatment compared with patients with high plasma histamine. Altogether, pre-existing allergy or high histamine levels in cancer patients can dampen immunotherapy responses and warrant prospectively exploring antihistamines as adjuvant agents for combinatorial immunotherapy.


Assuntos
Histamina/metabolismo , Imunoterapia , Neoplasias/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Humanos , Tolerância Imunológica/imunologia , Imunoterapia/métodos , Macrófagos/imunologia , Neoplasias/imunologia , Receptores Histamínicos/imunologia , Receptores Histamínicos/metabolismo , Microambiente Tumoral/imunologia
19.
Blood ; 139(25): 3594-3604, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34610113

RESUMO

Immune checkpoint inhibitors are a class of antineoplastic therapies that unleash immune cells to kill malignant cells. There are currently 7 medications that have been approved by the US Food and Drug Administration for the treatment of 14 solid tumors and 2 hematologic malignancies. These medications commonly cause immune-related adverse effects as a result of overactive T lymphocytes, autoantibody production, and/or cytokine dysregulation. Hematologic toxicities are rare and of uncertain mechanism, and therefore management is often based on experiences with familiar conditions involving these perturbed immune responses, such as autoimmune hemolytic anemia, immune thrombocytopenia, and idiopathic aplastic anemia. Management is challenging because one must attend to the hematologic toxicity while simultaneously attending to the malignancy, with the imperative that effective cancer therapy be maintained or minimally interrupted if possible. The purpose of this review is to help clinicians by providing a clinical and pathophysiological framework in which to view these problems.


Assuntos
Anemia Hemolítica Autoimune , Antineoplásicos , Neoplasias Hematológicas , Neoplasias , Anemia Hemolítica Autoimune/induzido quimicamente , Anemia Hemolítica Autoimune/tratamento farmacológico , Antineoplásicos/efeitos adversos , Neoplasias Hematológicas/terapia , Humanos , Inibidores de Checkpoint Imunológico , Neoplasias/tratamento farmacológico
20.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34725257

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections elicit both humoral and cellular immune responses. For the prevention and treatment of COVID-19, the disease caused by SARS-CoV-2, it has become increasingly apparent that T cell responses are equally if not more important than humoral responses in mediating recovery and immune protection. One major challenge in developing T cell-based therapies for infectious and malignant diseases has been the identification of immunogenic epitopes that can elicit a meaningful T cell response. Traditionally, this has been achieved using sophisticated in silico methods to predict putative epitopes deduced from binding affinities. Our studies find that, in contrast to current convention, "immunodominant" SARS-CoV-2 peptides defined by such in silico methods often fail to elicit T cell responses recognizing naturally presented SARS-CoV-2 epitopes. We postulated that immunogenic epitopes for SARS-CoV-2 are best defined empirically by directly analyzing peptides eluted from the naturally processed peptide-major histocompatibility complex (MHC) and then validating immunogenicity by determining whether such peptides can elicit T cells recognizing SARS-CoV-2 antigen-expressing cells. Using a tandem mass spectrometry approach, we identified epitopes derived from not only structural but also nonstructural genes in regions highly conserved among SARS-CoV-2 strains, including recently recognized variants. Finally, there are no reported T cell receptor-engineered T cell technology that can redirect T cell specificity to recognize and kill SARS-CoV-2 target cells. We report here several SARS-CoV-2 epitopes defined by mass spectrometric analysis of MHC-eluted peptides, provide empiric evidence for their immunogenicity, and demonstrate engineered TCR-redirected killing.


Assuntos
COVID-19/imunologia , Epitopos de Linfócito T/isolamento & purificação , Epitopos/isolamento & purificação , Espectrometria de Massas/métodos , Receptores de Antígenos de Linfócitos T/imunologia , SARS-CoV-2 , Linfócitos T CD8-Positivos , Linhagem Celular , Epitopos/genética , Epitopos de Linfócito T/imunologia , Humanos , Complexo Principal de Histocompatibilidade , Peptídeos , Receptores de Antígenos de Linfócitos T/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA