Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Vaccine Immunol ; 23(3): 213-8, 2016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-26740390

RESUMO

Bacillus anthracis, the causative agent of anthrax, secretes three polypeptides, which form the bipartite lethal and edema toxins (LT and ET, respectively). The common component in these toxins, protective antigen (PA), is responsible for binding to cellular receptors and translocating the lethal factor (LF) and edema factor (EF) enzymatic moieties to the cytosol. Antibodies against PA protect against anthrax. We previously isolated toxin-neutralizing variable domains of camelid heavy-chain-only antibodies (VHHs) and demonstrated their in vivo efficacy. In this work, gene therapy with an adenoviral (Ad) vector (Ad/VNA2-PA) (VNA, VHH-based neutralizing agents) promoting the expression of a bispecific VHH-based neutralizing agent (VNA2-PA), consisting of two linked VHHs targeting different PA-neutralizing epitopes, was tested in two inbred mouse strains, BALB/cJ and C57BL/6J, and found to protect mice against anthrax toxin challenge and anthrax spore infection. Two weeks after a single treatment with Ad/VNA2-PA, serum VNA2-PA levels remained above 1 µg/ml, with some as high as 10 mg/ml. The levels were 10- to 100-fold higher and persisted longer in C57BL/6J than in BALB/cJ mice. Mice were challenged with a lethal dose of LT or spores at various times after Ad/VNA2-PA administration. The majority of BALB/cJ mice having serum VNA2-PA levels of >0.1 µg/ml survived LT challenge, and 9 of 10 C57BL/6J mice with serum levels of >1 µg/ml survived spore challenge. Our findings demonstrate the potential for genetic delivery of VNAs as an effective method for providing prophylactic protection from anthrax. We also extend prior findings of mouse strain-based differences in transgene expression and persistence by adenoviral vectors.


Assuntos
Adenoviridae/genética , Antraz/prevenção & controle , Antígenos de Bactérias/imunologia , Toxinas Bacterianas/imunologia , Imunização Passiva/métodos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Animais , Antraz/imunologia , Anticorpos Antibacterianos/genética , Anticorpos Antibacterianos/imunologia , Bacillus anthracis/imunologia , Bacillus anthracis/patogenicidade , Feminino , Soros Imunes/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Esporos Bacterianos/imunologia
2.
J Immunol ; 196(2): 846-56, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26667172

RESUMO

Many intracellular pathogens cause disease by subverting macrophage innate immune defense mechanisms. Intracellular pathogens actively avoid delivery to or directly target lysosomes, the major intracellular degradative organelle. In this article, we demonstrate that activator of G-protein signaling 3 (AGS3), an LPS-inducible protein in macrophages, affects both lysosomal biogenesis and activity. AGS3 binds the Gi family of G proteins via its G-protein regulatory (GoLoco) motif, stabilizing the Gα subunit in its GDP-bound conformation. Elevated AGS3 levels in macrophages limited the activity of the mammalian target of rapamycin pathway, a sensor of cellular nutritional status. This triggered the nuclear translocation of transcription factor EB, a known activator of lysosomal gene transcription. In contrast, AGS3-deficient macrophages had increased mammalian target of rapamycin activity, reduced transcription factor EB activity, and a lower lysosomal mass. High levels of AGS3 in macrophages enhanced their resistance to infection by Burkholderia cenocepacia J2315, Mycobacterium tuberculosis, and methicillin-resistant Staphylococcus aureus, whereas AGS3-deficient macrophages were more susceptible. We conclude that LPS priming increases AGS3 levels, which enhances lysosomal function and increases the capacity of macrophages to eliminate intracellular pathogens.


Assuntos
Infecções Bacterianas/imunologia , Proteínas de Transporte/imunologia , Lisossomos/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Animais , Citometria de Fluxo , Inibidores de Dissociação do Nucleotídeo Guanina , Immunoblotting , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Reação em Cadeia da Polimerase , RNA Interferente Pequeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA