Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 3(3): 1506-1513, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35021641

RESUMO

To investigate tumor cell migration capability, the scratch/wound healing assay and the Transwell assay are the most commonly used assays in the current biomedical research laboratory. However, both assays have their limitations and may mislead the interpretation of the results. In the current study, visualization and quantification of tumor cell migration process was realized in a three-dimensional (3D) environment. The tumor cells horizontally migrated along a Matrigel-filled microchannel under extracellular stimulation. The cell migration process was visualized under a microscope, and the migration speed could be calculated based on the traveling distance of the cells and the time required. Here, three demonstrations were conducted, respectively, including cells attracted by nutrient gradient, stimulated by cytokine, and coculturing with fibroblasts. The results revealed that the cell migration capability could be visually and quantitatively correlated to the extracellular stimulation. The current protocol is compatible to the existing laboratory setup and provides a persuasive result for the study of the 3D cell migration process. Understanding of the molecular and intercellular mechanism of cancer metastasis can potentially develop effective therapeutic strategy.

2.
Micromachines (Basel) ; 10(1)2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30621072

RESUMO

Investigation of tumor development is essential in cancer research. In the laboratory, living cell culture is a standard bio-technology for studying cellular response under tested conditions to predict in vivo cellular response. In particular, the colony formation assay has become a standard experiment for characterizing the tumor development in vitro. However, quantification of the growth of cell colonies under a microscope is difficult because they are suspended in a three-dimensional environment. Thus, optical coherence tomography (OCT) imaging was develop in this study to monitor the growth of cell colonies. Cancer cell line of Huh 7 was used and the cells were applied on a layer of agarose hydrogel, i.e., a non-adherent surface. Then, cell colonies were gradually formed on the surface. The OCT technique was used to scan the cell colonies every day to obtain quantitative data for describing their growth. The results revealed the average volume increased with time due to the formation of cell colonies day-by-day. Additionally, the distribution of cell colony volume was analyzed to show the detailed information of the growth of the cell colonies. In summary, the OCT provides a non-invasive quantification technique for monitoring the growth of the cell colonies. From the OCT images, objective and precise information is obtained for higher prediction of the in vivo tumor development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA