Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 34(11): 3525-3532, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29478317

RESUMO

Lipid nanodiscs are widely used platforms for studying membrane proteins in a near-native environment. Lipid nanodiscs made with membrane scaffold proteins (MSPs) in the linear form have been well studied. Recently, a new kind of nanodisc made with MSPs in the circular form, referred to as covalently circularized nanodiscs (cNDs), has been reported to have some possible advantages in various applications. Given the potential of nanodisc technology, researchers in the field are very interested in learning more about this new kind of nanodisc, such as its reproducibility, production yield, and the possible pros and cons of using it. However, research on these issues is lacking. Here, we report a new study on nanodiscs made with circular MSPs, which are produced from a method different from the previously reported method. We show that our novel production method, detergent-assisted sortase-mediated ligation, can effectively avoid high-molecular-weight byproducts and also significantly improve the yield of the target proteins up to around 80% for larger circular MSP constructs. In terms of the application of circular MSPs, we demonstrate that they can be used to assemble nanodiscs using both synthetic lipids and native lipid extract as the source of lipids. We also show that bacteriorhodopsin can be successfully incorporated into this new kind of cND. Moreover, we found that cNDs have improved stability against both heat and high-concentration-induced aggregations, making them more beneficial for related applications.


Assuntos
Proteínas de Membrana/química , Nanoestruturas/química , Peptídeos Cíclicos/química , Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Dimiristoilfosfatidilcolina/química , Escherichia coli/química , Proteínas de Membrana/metabolismo , Peptídeos Cíclicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA