Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Redox Biol ; 67: 102894, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37839355

RESUMO

The present review summarizes the beneficial and detrimental roles of reactive oxygen species in myocardial ischemia/reperfusion injury and cardioprotection. In the first part, the continued need for cardioprotection beyond that by rapid reperfusion of acute myocardial infarction is emphasized. Then, pathomechanisms of myocardial ischemia/reperfusion to the myocardium and the coronary circulation and the different modes of cell death in myocardial infarction are characterized. Different mechanical and pharmacological interventions to protect the ischemic/reperfused myocardium in elective percutaneous coronary interventions and coronary artery bypass grafting, in acute myocardial infarction and in cardiotoxicity from cancer therapy are detailed. The second part keeps the focus on ROS providing a comprehensive overview of molecular and cellular mechanisms involved in ischemia/reperfusion injury. Starting from mitochondria as the main sources and targets of ROS in ischemic/reperfused myocardium, a complex network of cellular and extracellular processes is discussed, including relationships with Ca2+ homeostasis, thiol group redox balance, hydrogen sulfide modulation, cross-talk with NAPDH oxidases, exosomes, cytokines and growth factors. While mechanistic insights are needed to improve our current therapeutic approaches, advancements in knowledge of ROS-mediated processes indicate that detrimental facets of oxidative stress are opposed by ROS requirement for physiological and protective reactions. This inevitable contrast is likely to underlie unsuccessful clinical trials and limits the development of novel cardioprotective interventions simply based upon ROS removal.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Humanos , Espécies Reativas de Oxigênio/metabolismo , Miocárdio/metabolismo , Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , Oxirredução
2.
JACC CardioOncol ; 5(3): 343-355, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37397080

RESUMO

Background: Remote ischemic conditioning (RIC) has been beneficial in laboratory studies of anthracycline cardiotoxicity, but its effects in patients is not established. Objectives: The authors studied the effect of RIC on cardiac biomarkers and function during and after anthracycline chemotherapy. Methods: The ERIC-Onc study (Effect of Remote Ischaemic Conditioning in Oncology Patients; NCT02471885) was a randomized, single-blind, sham-controlled study of RIC at each chemotherapy cycle. The primary endpoint was troponin T (TnT) during chemotherapy and up to 1 year. Secondary outcomes included cardiac function, major adverse cardiovascular events (MACE), and MACE or cancer death. Cardiac myosin-binding-protein C (cMyC) was investigated in parallel with TnT. Results: The study was prematurely halted after the evaluation of 55 patients (RIC n = 28, sham n = 27). Biomarkers increased from baseline to cycle 6 of chemotherapy for all patients (median TnT 6 [IQR: 4-9] ng/L to 33 [IQR: 16-36)] ng/L; P ≤ 0.001; cMyC 3 (IQR: 2-5) ng/L to 47 (IQR: 18-49) ng/L; P ≤ 0.001). Mixed-effects regression analysis for repeated measures showed no difference in TnT between the 2 groups (RIC vs sham, mean difference 3.15 ng/L; 95% CI: -0.04 to 6.33; P = 0.053), or cMyC (RIC vs sham, mean difference 4.17 ng/L; 95% CI: -0.12 to 8.45; P = 0.056). There were more MACE and cancer deaths in the RIC group (11 vs 3; HR: 0.25; 95% CI: 0.07-0.90; P = 0.034), with more cancer deaths (8 vs 1; HR: 0.21; 95% CI: 0.04-0.95; P = 0.043) at 1 year. Conclusions: TnT and cMyC significantly increased during anthracycline chemotherapy with 81% having a TnT ≥14 ng/L at cycle 6. RIC did not affect the rise in biomarkers, but there was a small increase in early cancer deaths, possibly related to the greater proportion of patients with metastatic disease randomized to the RIC group (54%vs 37%). (Effect of Remote Ischaemic Conditioning in Oncology Patients [ERIC-ONC]; NCT02471885).

3.
J Clin Med ; 12(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37445326

RESUMO

OBJECTIVE: Cut-offs for high-sensitivity troponin (hs-Tn) elevations to define prognostically significant peri-operative myocardial injury (PMI) in cardiac surgery is not well-established. We evaluated the associations between peri-operative high-sensitivity troponin T (hs-TnT) elevations and 1-year all-cause mortality in patients undergoing cardiac surgery. METHODS: The prognostic significance of baseline hs-TnT and various thresholds for post-operative hs-TnT elevation at different time-points on 1-year all-cause mortality following cardiac surgery were assessed after adjusting for baseline hs-TnT and EuroSCORE in a post-hoc analysis of the ERICCA trial. RESULTS: 1206 patients met the inclusion criteria. Baseline elevation in hs-TnT >x1 99th percentile upper reference limit (URL) was significantly associated with 1-year all-cause mortality (adjusted hazard ratio 1.90, 95% confidence interval 1.15-3.13). In the subgroup with normal baseline hs-TnT (n = 517), elevation in hs-TnT at all post-operative time points was associated with higher 1-year mortality, reaching statistical significance for elevations above: ≥100 × URL at 6 h; ≥50 × URL at 12 and 24 h; ≥35 × URL at 48 h; and ≥30 × URL at 72 h post-surgery. Elevation in hs-TnT at 24 h ≥ 50 × URL had the optimal sensitivity and specificity (73% and 75% respectively). When the whole cohort of patients was analysed, including those with abnormal baseline hs-TnT (up to 10 × URL), the same threshold had optimal sensitivity and specificity (66% and 70%). CONCLUSIONS: Both baseline and post-operative hs-TnT elevations are independently associated with 1-year all-cause mortality in patients undergoing cardiac surgery. The optimal threshold to define a prognostically significant PMI in our study was ≥50 × URL elevation in hs-TnT at 24 h.

4.
Nature ; 618(7963): 159-168, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37225977

RESUMO

Harnessing the potential beneficial effects of kinase signalling through the generation of direct kinase activators remains an underexplored area of drug development1-5. This also applies to the PI3K signalling pathway, which has been extensively targeted by inhibitors for conditions with PI3K overactivation, such as cancer and immune dysregulation. Here we report the discovery of UCL-TRO-1938 (referred to as 1938 hereon), a small-molecule activator of the PI3Kα isoform, a crucial effector of growth factor signalling. 1938 allosterically activates PI3Kα through a distinct mechanism by enhancing multiple steps of the PI3Kα catalytic cycle and causes both local and global conformational changes in the PI3Kα structure. This compound is selective for PI3Kα over other PI3K isoforms and multiple protein and lipid kinases. It transiently activates PI3K signalling in all rodent and human cells tested, resulting in cellular responses such as proliferation and neurite outgrowth. In rodent models, acute treatment with 1938 provides cardioprotection from ischaemia-reperfusion injury and, after local administration, enhances nerve regeneration following nerve crush. This study identifies a chemical tool to directly probe the PI3Kα signalling pathway and a new approach to modulate PI3K activity, widening the therapeutic potential of targeting these enzymes through short-term activation for tissue protection and regeneration. Our findings illustrate the potential of activating kinases for therapeutic benefit, a currently largely untapped area of drug development.


Assuntos
Regeneração Nervosa , Humanos , Neoplasias/tratamento farmacológico , Regeneração Nervosa/efeitos dos fármacos , Isoformas de Proteínas/agonistas , Transdução de Sinais/efeitos dos fármacos , Classe I de Fosfatidilinositol 3-Quinases/química , Classe I de Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Cardiotônicos/farmacologia , Animais , Biocatálise/efeitos dos fármacos , Conformação Proteica/efeitos dos fármacos , Neuritos/efeitos dos fármacos , Traumatismo por Reperfusão/prevenção & controle , Compressão Nervosa , Proliferação de Células/efeitos dos fármacos
5.
Basic Res Cardiol ; 117(1): 31, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35727392

RESUMO

Remote ischaemic preconditioning (RIPC) using transient limb ischaemia failed to improve clinical outcomes following cardiac surgery and the reasons for this remain unclear. In the ERIC-GTN study, we evaluated whether concomitant nitrate therapy abrogated RIPC cardioprotection. We also undertook a post-hoc analysis of the ERICCA study, to investigate a potential negative interaction between RIPC and nitrates on clinical outcomes following cardiac surgery. In ERIC-GTN, 185 patients undergoing cardiac surgery were randomized to: (1) Control (no RIPC or nitrates); (2) RIPC alone; (3); Nitrates alone; and (4) RIPC + Nitrates. An intravenous infusion of nitrates (glyceryl trinitrate 1 mg/mL solution) was commenced on arrival at the operating theatre at a rate of 2-5 mL/h to maintain a mean arterial pressure between 60 and 70 mmHg and was stopped when the patient was taken off cardiopulmonary bypass. The primary endpoint was peri-operative myocardial injury (PMI) quantified by a 48-h area-under-the-curve high-sensitivity Troponin-T (48 h-AUC-hs-cTnT). In ERICCA, we analysed data for 1502 patients undergoing cardiac surgery to investigate for a potential negative interaction between RIPC and nitrates on clinical outcomes at 12-months. In ERIC-GTN, RIPC alone reduced 48 h-AUC-hs-cTnT by 37.1%, when compared to control (ratio of AUC 0.629 [95% CI 0.413-0.957], p = 0.031), and this cardioprotective effect was abrogated in the presence of nitrates. Treatment with nitrates alone did not reduce 48 h-AUC-hs-cTnT, when compared to control. In ERICCA there was a negative interaction between nitrate use and RIPC for all-cause and cardiovascular mortality at 12-months, and for risk of peri-operative myocardial infarction. RIPC alone reduced the risk of peri-operative myocardial infarction, compared to control, but no significant effect of RIPC was demonstrated for the other outcomes. When RIPC and nitrates were used together they had an adverse impact in patients undergoing cardiac surgery with the presence of nitrates abrogating RIPC-induced cardioprotection and increasing the risk of mortality at 12-months post-cardiac surgery in patients receiving RIPC.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Precondicionamento Isquêmico Miocárdico , Precondicionamento Isquêmico , Infarto do Miocárdio , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Humanos , Precondicionamento Isquêmico/efeitos adversos , Infarto do Miocárdio/etiologia , Nitratos , Resultado do Tratamento , Troponina T
6.
Basic Res Cardiol ; 116(1): 12, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33629195

RESUMO

The benefits of remote ischaemic conditioning (RIC) have been difficult to translate to humans, when considering traditional outcome measures, such as mortality and heart failure. This paper reviews the recent literature of the anti-inflammatory effects of RIC, with a particular focus on the innate immune response and cytokine inhibition. Given the current COVID-19 pandemic, the inflammatory hypothesis of cardiac protection is an attractive target on which to re-purpose such novel therapies. A PubMed/MEDLINE™ search was performed on July 13th 2020, for the key terms RIC, cytokines, the innate immune system and inflammation. Data suggest that RIC attenuates inflammation in animals by immune conditioning, cytokine inhibition, cell survival and the release of anti-inflammatory exosomes. It is proposed that RIC inhibits cytokine release via a reduction in nuclear factor kappa beta (NF-κB)-mediated NLRP3 inflammasome production. In vivo, RIC attenuates pro-inflammatory cytokine release in myocardial/cerebral infarction and LPS models of endotoxaemia. In the latter group, cytokine inhibition is associated with a profound survival benefit. Further clinical trials should establish whether the benefits of RIC in inflammation can be observed in humans. Moreover, we must consider whether uncomplicated MI and elective surgery are the most suitable clinical conditions in which to test this hypothesis.


Assuntos
Citocinas/fisiologia , Imunidade Inata , Inflamação/terapia , Precondicionamento Isquêmico Miocárdico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Animais , COVID-19/complicações , Sobrevivência Celular , Vesículas Extracelulares/fisiologia , Humanos , Imunidade Humoral , Inflamação/sangue , Traumatismo por Reperfusão Miocárdica/imunologia
7.
Basic Res Cardiol ; 115(3): 26, 2020 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-32146560

RESUMO

Mesenchymal stromal cells (MSCs) exhibit antiapoptotic and proangiogenic functions in models of myocardial infarction which may be mediated by secreted small extracellular vesicles (sEVs). However, MSCs have frequently been harvested from aged or diseased patients, while the isolated sEVs often contain high levels of impurities. Here, we studied the cardioprotective and proangiogenic activities of size-exclusion chromatography-purified sEVs secreted from human foetal amniotic fluid stem cells (SS-hAFSCs), possessing superior functional potential to that of adult MSCs. We demonstrated for the first time that highly pure (up to 1.7 × 1010 particles/µg protein) and thoroughly characterised SS-hAFSC sEVs protect rat hearts from ischaemia-reperfusion injury in vivo when administered intravenously prior to reperfusion (38 ± 9% infarct size reduction, p < 0.05). SS-hAFSC sEVs did not protect isolated primary cardiomyocytes in models of simulated ischaemia-reperfusion injury in vitro, indicative of indirect cardioprotective effects. SS-hAFSC sEVs were not proangiogenic in vitro, although they markedly stimulated endothelial cell migration. Additionally, sEVs were entirely responsible for the promigratory effects of the medium conditioned by SS-hAFSC. Mechanistically, sEV-induced chemotaxis involved phosphatidylinositol 3-kinase (PI3K) signalling, as its pharmacological inhibition in treated endothelial cells reduced migration by 54 ± 7% (p < 0.001). Together, these data indicate that SS-hAFSC sEVs have multifactorial beneficial effects in a myocardial infarction setting.


Assuntos
Líquido Amniótico/citologia , Cardiotônicos/metabolismo , Movimento Celular , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Quimiotaxia , Humanos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fosfatidilinositol 3-Quinase/metabolismo , Ratos , Traumatismo por Reperfusão/patologia
8.
J Cell Mol Med ; 24(8): 4871-4876, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32101370

RESUMO

Small extracellular vesicles (EVs) are novel players in vascular biology. However, a thorough understanding of their production and function remains elusive. Endothelial senescence is a key feature of vascular ageing and thus, is an attractive therapeutic target for the treatment of vascular disease. In this study, we sought to characterize the EV production of senescent endothelial cells. To achieve this, Human Umbilical Vascular Endothelial Cells (HUVECs) were replicated until they reached senescence, as determined by measurement of Senescence-Associated ß-Galactosidase activity via microscopy and flow cytometry. Expression of the endosomal marker Rab7 and the EV marker CD63 was determined by immunofluorescence. Small EVs were isolated by ultracentrifugation and characterized using electron microscopy, nanoparticle tracking analysis and immunoassays to assess morphology, size, concentration and expression of exosome markers CD9 and CD81. Migration of HUVECs in response to EVs was studied using a transwell assay. The results showed that senescent endothelial cells express higher levels of Rab7 and CD63. Moreover, senescent endothelial cells produced higher levels of CD9- and CD81-positive EVs. Additionally, small EVs from both young and senescent endothelial cells promoted HUVEC migration. Overall, senescent endothelial cells produce an increased number of functional small EVs, which may have a role in vascular physiology and disease.


Assuntos
Senescência Celular/genética , Células Endoteliais/metabolismo , Exossomos/genética , Vesículas Extracelulares/genética , Biomarcadores/metabolismo , Células Endoteliais/citologia , Citometria de Fluxo , Células Endoteliais da Veia Umbilical Humana , Humanos , Tetraspanina 29/genética , Tetraspanina 30/genética , beta-Galactosidase/genética , Proteínas rab de Ligação ao GTP/genética , proteínas de unión al GTP Rab7
9.
Cardiovasc Drugs Ther ; 33(6): 661-667, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31721014

RESUMO

PURPOSE: A substantial number of ischaemic stroke patients who receive reperfusion therapy in the acute phase do not ever fully recover. This reveals the urgent need to develop new adjunctive neuroprotective treatment strategies alongside reperfusion therapy. Previous experimental studies demonstrated the potential of glucagon-like peptide-1 (GLP-1) to reduce acute ischaemic damage in the brain. Here, we examined the neuroprotective effects of two GLP-1 analogues, liraglutide and semaglutide. METHODS: A non-diabetic rat model of acute ischaemic stroke involved 90, 120 or 180 min of middle cerebral artery occlusion (MCAO). Liraglutide or semaglutide was administered either i.v. at the onset of reperfusion or s.c. 5 min before the onset of reperfusion. Infarct size and functional status were evaluated after 24 h or 72 h of reperfusion. RESULTS: Liraglutide, administered as a bolus at the onset of reperfusion, reduced infarct size by up to 90% and improved neuroscore at 24 h in a dose-dependent manner, following 90-min, but not 120-min or 180-min ischaemia. Semaglutide and liraglutide administered s.c. reduced infarct size by 63% and 48%, respectively, and improved neuroscore at 72 h following 90-min MCAO. Neuroprotection by semaglutide was abolished by GLP1-R antagonist exendin(9-39). CONCLUSION: Infarct-limiting and functional neuroprotective effects of liraglutide are dose-dependent. Neuroprotection by semaglutide is at least as strong as by liraglutide and is mediated by GLP-1Rs.


Assuntos
Encéfalo/efeitos dos fármacos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Peptídeos Semelhantes ao Glucagon/farmacologia , Incretinas/farmacologia , Infarto da Artéria Cerebral Média/terapia , Liraglutida/farmacologia , Fármacos Neuroprotetores/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Reperfusão/efeitos adversos , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Infarto da Artéria Cerebral Média/patologia , Masculino , Ratos Sprague-Dawley , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Fatores de Tempo
12.
Basic Res Cardiol ; 113(6): 43, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30310998

RESUMO

Due to its poor capacity for regeneration, the heart is particularly sensitive to the loss of contractile cardiomyocytes. The onslaught of damage caused by ischaemia and reperfusion, occurring during an acute myocardial infarction and the subsequent reperfusion therapy, can wipe out upwards of a billion cardiomyocytes. A similar program of cell death can cause the irreversible loss of neurons in ischaemic stroke. Similar pathways of lethal cell injury can contribute to other pathologies such as left ventricular dysfunction and heart failure caused by cancer therapy. Consequently, strategies designed to protect the heart from lethal cell injury have the potential to be applicable across all three pathologies. The investigators meeting at the 10th Hatter Cardiovascular Institute workshop examined the parallels between ST-segment elevation myocardial infarction (STEMI), ischaemic stroke, and other pathologies that cause the loss of cardiomyocytes including cancer therapeutic cardiotoxicity. They examined the prospects for protection by remote ischaemic conditioning (RIC) in each scenario, and evaluated impasses and novel opportunities for cellular protection, with the future landscape for RIC in the clinical setting to be determined by the outcome of the large ERIC-PPCI/CONDI2 study. It was agreed that the way forward must include measures to improve experimental methodologies, such that they better reflect the clinical scenario and to judiciously select combinations of therapies targeting specific pathways of cellular death and injury.


Assuntos
Cardiologia , Oncologia , Infarto do Miocárdio , Acidente Vascular Cerebral , Animais , Antineoplásicos/efeitos adversos , Cardiologia/métodos , Cardiologia/tendências , Citoproteção , Humanos , Precondicionamento Isquêmico Miocárdico/métodos , Oncologia/métodos , Oncologia/tendências , Traumatismo por Reperfusão Miocárdica/prevenção & controle
13.
Basic Res Cardiol ; 113(4): 25, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29858664

RESUMO

Remote ischaemic conditioning (RIC) is a promising method of cardioprotection, with numerous clinical studies having demonstrated its ability to reduce myocardial infarct size and improve prognosis. On the other hand, there are several clinical trials, in particular those conducted in the setting of elective cardiac surgery, that have failed to show any benefit of RIC. These contradictory data indicate that there is insufficient understanding of the mechanisms underlying RIC. RIC is now known to signal indiscriminately, protecting not only the heart, but also other organs. In particular, experimental studies have demonstrated that it is able to reduce infarct size in an acute ischaemic stroke model. However, the mechanisms underlying RIC-induced neuroprotection are even less well understood than for cardioprotection. The existence of bidirectional feedback interactions between the heart and the brain suggests that the mechanisms of RIC-induced neuroprotection and cardioprotection should be studied as a whole. This review, therefore, addresses the topic of the neural component of the RIC mechanism.


Assuntos
Encéfalo/metabolismo , Transtornos Cerebrovasculares/prevenção & controle , Precondicionamento Isquêmico Miocárdico , Precondicionamento Isquêmico/métodos , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/metabolismo , Vias Neurais/metabolismo , Animais , Encéfalo/patologia , Encéfalo/fisiopatologia , Transtornos Cerebrovasculares/metabolismo , Transtornos Cerebrovasculares/patologia , Transtornos Cerebrovasculares/fisiopatologia , Retroalimentação Fisiológica , Humanos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/patologia , Vias Neurais/patologia , Vias Neurais/fisiopatologia , Transdução de Sinais
14.
Cardiovasc Drugs Ther ; 32(3): 245-253, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29766336

RESUMO

PURPOSE: Anthracyclines cause chronic irreversible cardiac failure, but the mechanism remains poorly understood. Emerging data indicate that cardiac damage begins early, suggesting protective modalities delivered in the acute stage may confer prolonged benefit. Ischaemic preconditioning (IPC) activates the pro-survival reperfusion injury salvage kinase (RISK) pathway which involves PI3-kinase and MAPK/ERK1/2. METHODS: We investigated whether simulated IPC (sIPC), in the form of a sublethal exposure to a hypoxic buffer simulating ischaemic conditions followed by reoxygenation, protects primary adult rat cardiomyocytes against anthracycline-induced injury. PI3-kinase and MAPK/ERK1/2 were inhibited using LY294002, and PD98059. The role of reactive oxygen species (ROS), mitochondrial membrane potential (Δψm) and mitochondrial permeability transition pore (mPTP) were also investigated in doxorubicin-treated cells. We further examined whether sIPC protected HeLa cancer cells from doxorubicin-induced death. RESULTS: sIPC protected cardiomyocytes against doxorubicin-induced death (35.4 ± 1.7% doxorubicin vs 14.7 ± 1.5% doxorubicin + sIPC; p < 0.01). This protection was abrogated by the PI3-kinase inhibitor, LY294002, but not the MAPK/ERK1/2 inhibitor, PD98059. A ROS scavenger failed to rescue cardiomyocytes from doxorubicin toxicity, and no significant influence on Δψm or mPTP opening was identified after subjecting cells to a doxorubicin insult. Importantly, sIPC did not protect HeLa cancer cells from doxorubicin-induced death. CONCLUSION: sIPC is able to protect cardiomyocytes against anthracycline injury via a pathway involving PI3-kinase. This mechanism appears to be independent of ROS, changes to Δψm, and mPTP. Further investigation of the mechanism of sIPC-induced protection against anthracycline-injury is warranted.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Doxorrubicina/toxicidade , Cardiopatias/prevenção & controle , Precondicionamento Isquêmico Miocárdico , Miócitos Cardíacos/efeitos dos fármacos , Fosfatidilinositol 3-Quinase/metabolismo , Animais , Cardiotoxicidade , Hipóxia Celular , Feminino , Células HeLa , Cardiopatias/induzido quimicamente , Cardiopatias/enzimologia , Cardiopatias/patologia , Humanos , Masculino , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Neoplasias do Colo do Útero/enzimologia , Neoplasias do Colo do Útero/patologia
15.
Cardiovasc Drugs Ther ; 32(2): 165-168, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29582211

RESUMO

PURPOSE: Protecting the heart from ischaemia-reperfusion (IR) injury is a major goal in patients presenting with an acute myocardial infarction. Pyroptosis is a novel form of cell death in which caspase 1 is activated and cleaves interleukin 1ß. VX-785 is a highly selective, prodrug caspase 1 inhibitor that is also clinically available. It has been shown to be protective against acute IR in vivo rat model, and therefore might be a promising possibility for future cardioprotective therapy. However, it is not known whether protection by VX-765 involves the reperfusion injury salvage kinase (RISK) pathway. We therefore investigated whether VX-765 protects the isolated, perfused rat heart via the PI3K/Akt pathway and whether protection was additive with ischaemic preconditioning (IPC). METHODS: Langendorff-perfused rat hearts were subject to ischaemia and reperfusion injury in the presence of 30 µM VX-765, with precedent IPC, or the combination of VX-765 and IPC. RESULTS: VX-765 reduced infarct size (28 vs 48% control; P < 0.05) to a similar extent as IPC (30%; P < 0.05). The PI3 kinase inhibitor, wortmannin, abolished the protective effect of VX-765. Importantly in the model used, we were unable to show additive protection with VX-765 + IPC. CONCLUSIONS: The caspase 1 inhibitor, VX-765, was able to reduce myocardial infarction in a model of IR injury. However, the addition of IPC did not demonstrate any further protection.


Assuntos
Caspase 1/metabolismo , Inibidores de Caspase/farmacologia , Dipeptídeos/farmacologia , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/enzimologia , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , para-Aminobenzoatos/farmacologia , Animais , Citoproteção , Modelos Animais de Doenças , Preparação de Coração Isolado , Masculino , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Piroptose/efeitos dos fármacos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
16.
J Cell Mol Med ; 22(2): 926-935, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29159980

RESUMO

The Reperfusion Injury Salvage Kinase (RISK) pathway is considered the main pro-survival kinase cascade mediating the ischaemic preconditioning (IPC) cardioprotective effect. To assess the role of PI3K-Akt, its negative regulator PTEN and other pro-survival proteins such as ERK and STAT3 in the context of IPC, C57BL/6 mouse hearts were retrogradely perfused in a Langendorff system and subjected to 4 cycles of 5 min. ischaemia and 5 min. reperfusion prior to 35 min. of global ischaemia and 120 min. of reperfusion. Wortmannin, a PI3K inhibitor, was administered either at the stabilization period or during reperfusion. Infarct size was assessed using triphenyl tetrazolium staining, and phosphorylation levels of Akt, PTEN, ERK, GSK3ß and STAT3 were evaluated using Western blot analyses. IPC reduced infarct size in hearts subjected to lethal ischaemia and reperfusion, but this effect was lost in the presence of Wortmannin, whether it was present only during preconditioning or only during early reperfusion. IPC increased the levels of Akt phosphorylation during both phases and this effect was fully abrogated by PI3K, whilst its downstream GSK3ß was phosphorylated only during the trigger phase after IPC. Both PTEN and STAT3 were phosphorylated during both phases after IPC, but this was PI3K independent. IPC increases ERK phosphorylation during both phases, being only PI3K-dependent during the IPC phase. In conclusion, PI3K-Akt plays a major role in IPC-induced cardioprotection. However, PTEN, ERK and STAT3 are also phosphorylated by IPC through a PI3K-independent pathway, suggesting that cardioprotection is mediated through more than one cell signalling cascade.


Assuntos
Precondicionamento Isquêmico Miocárdico , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Animais , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Masculino , Camundongos Endogâmicos C57BL , PTEN Fosfo-Hidrolase/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Análise de Sobrevida
17.
Mol Aspects Med ; 60: 104-114, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29122678

RESUMO

Exosomes are nano-sized vesicles released by numerous cell types that appear to have diverse beneficial effects on the injured heart. Studies using exosomes from stem cells or from the blood have indicated that they are able to protect the heart both in models of acute ischaemia and reperfusion, and during chronic ischaemia. In addition to decreasing initial infarct size, they are able to stimulate angiogenesis, reduce fibrosis and remodelling, alter immune cell function and improve long-term cardiac contractile function. However, since the technology and techniques used for the study of exosomes is relatively immature and continually evolving, there remain many important caveats to the interpretation of studies. This review presents a critical analysis of the field of exosomes and cardioprotection. We analyse the effects of exosomes from all types of stem cells investigated to date, summarize the major effects observed and their potential mechanism, and offer our perspective on the major outstanding issues.


Assuntos
Cardiotônicos/metabolismo , Exossomos/metabolismo , Animais , Biomarcadores , Humanos , Células-Tronco Mesenquimais/metabolismo , Miócitos Cardíacos/metabolismo , Especificidade de Órgãos , Fenótipo , Células-Tronco/metabolismo
18.
Cardiovasc Res ; 114(3): 358-367, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29040423

RESUMO

Heart failure is rapidly increasing in prevalence and will redraw the global landscape for cardiovascular health. Alleviating and repairing cardiac injury associated with myocardial infarction (MI) is key to improving this burden. Homing signals mobilize and recruit stem cells to the ischaemic myocardium where they exert beneficial paracrine effects. The chemoattractant cytokine SDF-1α and its associated receptor CXCR4 are upregulated after MI and appear to be important in this context. Activation of CXCR4 promotes both cardiomyocyte survival and stem cell migration towards the infarcted myocardium. These effects have beneficial effects on infarct size, and left ventricular remodelling and function. However, the timing of endogenous SDF-1α release and CXCR4 upregulation may not be optimal. Furthermore, current ELISA-based assays cannot distinguish between active SDF-1α, and SDF-1α inactivated by dipeptidyl peptidase 4 (DPP4). Current therapeutic approaches aim to recruit the SDF-1α-CXCR4 pathway or prolong SDF-1α life-time by preventing its cleavage by DPP4. This review assesses the evidence supporting these approaches and proposes SDF-1α as an important confounder in recent studies of DPP4 inhibitors.


Assuntos
Cardiomiopatias/tratamento farmacológico , Quimiocina CXCL12/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Isquemia Miocárdica/complicações , Miocárdio/metabolismo , Animais , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Cardiomiopatias/fisiopatologia , Quimiocina CXCL12/metabolismo , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Meia-Vida , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Humanos , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/fisiopatologia , Miocárdio/patologia , Receptores CXCR4/metabolismo , Transdução de Sinais/efeitos dos fármacos , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos
20.
Heart ; 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28794136

RESUMO

OBJECTIVE: We aimed to investigate whether preoperative serum neutrophil gelatinase-associated lipocalin (sNGALpre-op) predicted postoperative acute kidney injury (AKI) during hospitalisation and 1-year cardiovascular and all-cause mortality following adult cardiac surgery. METHODS: This study was a post hoc analysis of the Effect of Remote Ischemic Preconditioning on Clinical Outcomes in Patient Undergoing Coronary Artery Bypass Graft Surgery trial involving adult patients undergoing coronary artery bypass graft. Postoperative AKI within 72 hours was defined using the International Kidney Disease: Improving Global Outcomes classification. RESULTS: 1371 out of 1612 patients had data on sNGALpre-op. The overall 1-year cardiovascular and all-cause mortality was 5.2% (71/1371) and 7.7% (105/1371), respectively. There was an observed increase in the incidence of AKI from the first to the third tertile of sNGALpre-op (30.5%, 41.5% and 45.9%, respectively, p<0.001). There was also an increase in both cardiovascular and all-cause mortality from the first to the third tertile of sNGALpre-op, linear trend test with adjusted p=0.018 and p=0.013, respectively. The adjusted HRs for those in the second and third tertiles of sNGALpre-op compared with the first tertile were 1.60 (95% CI 0.78 to 3.25) and 2.22 (95% CI 1.13 to 4.35) for cardiovascular mortality, and 1.25 (95% CI 0.71 to 2.22) and 1.91 (95% CI 1.13 to 3.25) for all-cause mortality at 1 year. CONCLUSION: In a cohort of high-risk adult patients undergoing cardiac surgery, there was an increase in postoperative AKI and 1-year mortality from the first to the third tertile of preoperative serum NGAL. Those in the last tertile (>220 ng/L) had an estimated twofold increase risk of cardiovascular and all-cause mortality at 1 year. CLINICAL TRIAL REGISTRATION: NCT101247545; Post-results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA