Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 10(11)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36359322

RESUMO

Bone defects can arise from numerous reasons, such as aging, tumor, trauma, infection, surgery, and congenital diseases. Bone grafts are commonly used as a substitute to fill the void and regenerate the defect. Due to its clean and green technology, the supercritical carbon dioxide (SCCO2) extraction aided the production of bone grafts is a recent trend. The SCCO2-derived bone graft has osteoconductive and osteoinductive properties along with excellent biocompatible, nontoxic, bioabsorbable, osteoconductive, and good mechanical properties; however, clinical usage during surgery is time-consuming. Therefore, we produced a putty material combining bone graft powder and acellular dermal matrix (ADM) powder and tested its regenerative efficacy in the critical defect in the rabbit model. The putty was found to retain the tubular structure. In addition, the putty depicted excellent stickiness and cohesiveness in both saline and blood medium. The bone regeneration of bone graft and putty was similar; both had excellent bone healing and regeneration of critical defects as evaluated by the X-ray, microtomography, hematoxylin-eosin, Masson trichrome, and alizarin red staining. Putty contains a less washout rate, good mechanical strength, and biocompatibility. In conclusion, the SCCO2-derived moldable putty could be a promising easy-to-use alternative for bone grafts at present which might have real-world usage in orthopedics as a potential bone void filler and dental socket preservation.

2.
Genes (Basel) ; 13(5)2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35627140

RESUMO

About 30-50% of oral cancer patients require mandibulectomy and autologous fibula reconstruction. Autograft is the gold standard choice because of its histocompatibility; however, it requires additional surgery from the patient and with possible complications such as loss of fibula leading to calf weakening in the future. Allograft and xenograft are alternatives but are susceptible to immune response. Currently, no personalized bone xenografts are available in the market for large fascial bone defects. In addition, a large-sized complex shape bone graft cannot be produced directly from the raw material. We propose the use of porcine bones with 3D CAD/CAM carving to reconstruct a personalized, wide range and complex-shaped bone. We anticipate that patients can restore their native facial appearance after reconstruction surgery. Supercritical CO2 (SCCO2) technology was employed to remove the cells, fat and non-collagenous materials while maintaining a native collagen scaffold as a biomedical device for bone defects. We successfully developed 3D CAD/CAM carved bone matrices, followed by SCCO2 decellularization of those large-sized bones. A lock-and-key puzzle design was employed to fulfil a wide range of large and complex-shaped maxillofacial defects. To conclude, the 3D CAD/CAM carved bone matrices with lock and key puzzle Lego design were completely decellularized by SCCO2 extraction technology with intact natural collagen scaffold. In addition, the processed bone matrices were tested to show excellent cytocompatibility and mechanical stiffness. Thus, we can overcome the limitation of large size and complex shapes of xenograft availability. In addition, the 3D CAD/CAM carving process can provide personalized tailor-designed decellularized bone grafts for the native appearance for maxillofacial reconstruction surgery for oral cancer patients and trauma patients.


Assuntos
Matriz Óssea , Neoplasias Bucais , Animais , Dióxido de Carbono , Xenoenxertos , Humanos , Suínos , Transplante Heterólogo
3.
Int J Med Sci ; 18(16): 3684-3691, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790040

RESUMO

Orbital floor fractures subsequently lead to consequences such as diplopia and enophthalmos. The graft materials used in orbital floor fractures varied from autografts to alloplastic grafts, which possess certain limitations. In the present study, a novel porcine bone matrix decellularized by supercritical CO2 (scCO2), ABCcolla® Collagen Bone Graft, was used for the reconstruction of the orbital framework. The study was approved by the institutional review board (IRB) of Kaohsiung Medical University Chung-Ho Memorial Hospital (KMUH). Ten cases underwent orbital floor reconstruction in KMUH in 2019. The orbital defects were fixed by the implantation of the ABCcolla® Collagen Bone Graft. Nine out of ten cases used 1 piece of customized ABCcolla® Collagen Bone Graft in each defect. The other case used 2 pieces of customized ABCcolla® Collagen Bone Graft in one defect area due to the curved outline of the defect. In the outpatient clinic, all 10 cases showed improvement of enophthalmos on CT (computerized tomography) at week 8 follow-up. No replacement of implants was needed during follow-ups. To conclude, ABCcolla® Collagen Bone Graft proved to be safe and effective in the reconstruction of the orbital floor with high accessibility, high stability, good biocompatibility, low infection rate and low complication rate.


Assuntos
Transplante Ósseo/métodos , Matriz Extracelular Descelularizada/uso terapêutico , Fraturas Orbitárias/cirurgia , Procedimentos de Cirurgia Plástica/métodos , Adulto , Idoso , Animais , Dióxido de Carbono/uso terapêutico , Enoftalmia/complicações , Enoftalmia/cirurgia , Feminino , Xenoenxertos/transplante , Humanos , Masculino , Pessoa de Meia-Idade , Órbita/patologia , Órbita/cirurgia , Fraturas Orbitárias/complicações , Estudos Retrospectivos , Retalhos Cirúrgicos/transplante , Suínos , Taiwan , Resultado do Tratamento
4.
J Mater Chem B ; 4(14): 2444-2454, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32263194

RESUMO

Gelatin is an efficient drug delivery vehicle for attaching targeting molecules like phytohemagglutinin erythroagglutinating (PHA-E) and carrying the chemotherapeutic agent gemcitabine (GEM). Fluorescent gelatin nanoparticles (GNPs) conjugated with PHA-E and carrying gemcitabine (GNP-(PHA-E)-GEM) were synthesized by nanoprecipitation for guiding gemcitabine-loaded gelatin nanoparticles to NSCLC by PHA-E targeting. GNPs have a uniform narrow size distribution and spherical shape, and their particle size is about 290 nm. The release rate of gemcitabine from nanoparticles reached the plateau of the curve at approximately 30% within 72 hours. PHA-E conjugated nanoparticles could enhance the cellular accumulation of nanoparticles. The results showed that GNP-(PHA-E)-GEM treatment caused an increase of cell growth inhibition and cytotoxicity on NSCLC cells A-549 and H292. In an Annexin V/PI assay, treatment with GNP-(PHA-E)-GEM could induce apoptosis of cancer cells. Treatment of NSCLC cells with GNP-(PHA-E)-GEM firstly resulted in time-dependent inhibition of epidermal growth factor receptor (EGFR) and Akt phosphorylation. And it also could increase p53 phosphorylation. And then it could decrease Bad phosphorylation and increase Bax. Finally, it could result in enhancing the release of cytochrome c, which thus increases caspase-9 and caspase-3. In conclusion, GNP-(PHA-E)-GEM could induce growth inhibition and cytotoxicity, which was mediated through inhibition of EGFR phosphorylation and the switching on of p53 that causes cell apoptosis of NSCLC cells A-549 and H292. It's significant to conjugate PHA-E for targeting cancer and inhibiting EGFR phosphorylation as it could decrease the dosage of gemcitabine, which reduces side effects on normal tissue. GNP-(PHA-E)-GEM has great potential for NSCLC treatment.

5.
J Mater Chem B ; 4(2): 237-244, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-32263366

RESUMO

Cardiovascular diseases (CVDs) are some of the leading causes of death and bypass surgery is one of the common treatment options for the critical CVD patients. There is no ideal material available for arterial bypass surgery. Herein, a fibroin and keratin porous membrane was prepared by electro-spinning and proposed for tissue-engineered vascular grafts (TEVGs). The purified fibroin (F) and keratin (K) were mixed in different weight ratios of 9 : 1 (FK91), 8 : 2 (FK82), and 7 : 3 (FK73) to obtain a membrane. The SEM images revealed that the electro-spinned membranes have a fibrous interconnected porous structure. The average diameter of the membrane F, FK91, FK82 and FK73 was 5.74 ± 1.04, 4.20 ± 1.19, 2.94 ± 0.81 and 2.27 ± 0.65 µm, respectively. The ultimate tensile strength (UTS) of F, FK91, FK82 and FK73 was 2.09 ± 0.06, 2.02 ± 0.06, 1.81 ± 0.10 and 1.74 ± 0.12 MPa, respectively. The contact angle of F, FK91, FK82 and FK73 was 72.55 ± 0.55°, 66.39 ± 0.90°, 43.47 ± 0.04° and 33.65 ± 2.83°, respectively. The wettability results were in agreement with those of the cell adhesion to the electro-spinning membranes. The attached HUVECs on the developed membranes showed no cytotoxicity. The immunocytochemistry staining and qPCR analysis showed that the phenotype of the keratin-fibroin membrane was not altered. The results of the ultimate tensile strength, cell adhesion and microstructure revealed that FK82 is similar to native vessels and could be considered as a potential material for TEVGs.

6.
PLoS One ; 10(2): e0116610, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25723471

RESUMO

Epidermal growth factor receptor (EGFR) is often constitutively stimulated in many cancers owing to the binding of ligands such as epidermal growth factor (EGF). Therefore, it is necessary to investigate the interaction between EGFR and its targeting biomolecules. The main aim of this study was to estimate the binding affinity and adhesion force of two targeting molecules, anti-EGFR monoclonal antibody (mAb LA1) and the peptide GE11 (YHWYGYTPQNVI), with respect to EGFR and to compare these values with those obtained for the ligand, EGF. Surface plasmon resonance (SPR) was used to determine the equilibrium dissociation constant (KD) for evaluating the binding affinity. Atomic force microscopy (AFM) was performed to estimate the adhesion force. In the case of EGFR, the KD of EGF, GE11, and mAb LA1 were 1.77 × 10-7, 4.59 × 10-4 and 2.07 × 10-9, respectively, indicating that the binding affinity of mAb LA1 to EGFR was higher than that of EGF, while the binding affinity of GE11 to EGFR was the lowest among the three molecules. The adhesion force between EGFR and mAb LA1 was 210.99 pN, which is higher than that observed for EGF (209.41 pN), while the adhesion force between GE11 and EGFR was the lowest (59.51 pN). These results suggest that mAb LA1 binds to EGFR with higher binding affinity than EGF and GE11. Moreover, the adhesion force between mAb LA1 and EGFR was greater than that observed for EGF and GE11. The SPR and AFM experiments confirmed the interaction between the receptor and targeting molecules. The results of this study might aid the screening of ligands for receptor targeting and drug delivery.


Assuntos
Anticorpos Monoclonais/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Peptídeos/metabolismo , Anticorpos Monoclonais/química , Receptores ErbB/química , Humanos , Microscopia de Força Atômica , Peptídeos/química , Ressonância de Plasmônio de Superfície
7.
Biomaterials ; 30(20): 3476-85, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19345990

RESUMO

To develop a polymer-anticancer drug conjugate, we employed gelatin nanoparticles (GPs) as carriers of cisplatin (CDDP) with anticipated improved therapeutic effect and reduced side effects. The anticancer activities of CDDP-incorporated in GPs (GP-Pt) with biotinylated-EGF (bEGF) modification (GP-Pt-bEGF) were studied. GP-Pt-bEGF with EGFR affinity produced much higher Pt concentrations in A549 cells (high EGFR expression) than in HFL1 cells (low EGFR expression). An in vitro anticancer study showed that GP-Pt-bEGF was more potent than free CDDP or GP-Pt because of its rapid effect on the cell cycle as well as a lower IC(50) (1.2microg/ml) that inhibits A549 cell growth. PI staining showed that cells treated with GP-Pt-bEGF for only 4h had the highest sub-G1 population. The CDDP formulations - free CDDP, GP-Pt, and GP-Pt-bEGF - were given by intratumorous injections to SCID mice in a subcutaneous model. This treatment showed that GP-Pt-bEGF had stronger anti-tumor activity and was less toxic than free CDDP in vivo. Mice treated with GP-Pt-bEGF showed slight body weight loss, whereas free CDDP treatment at the same dose caused a body weight loss of 20-30%. Furthermore, these formulations were given to mice with lung cancer via aerosol delivery. This treatment showed that inhaled GP-Pt-bEGF could target EGFR-overexpressing cells to achieve high cisplatin dosage in cancerous lungs. To summarize, gelatin nanoparticles loaded with CDDP and decorated with EGF tumor-specific ligand were successfully developed. Their in vitro and in vivo targeting ability and anticancer effect were confirmed. The aerosol delivery of the nanodrug carrier was demonstrated. Simple aerosol delivery of targeted drug carriers may prove useful for the clinical treatment of lung cancer patients.


Assuntos
Antineoplásicos , Cisplatino , Portadores de Fármacos , Fator de Crescimento Epidérmico , Gelatina , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas , Administração por Inalação , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Biotinilação , Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Cisplatino/química , Cisplatino/uso terapêutico , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos , Fator de Crescimento Epidérmico/química , Fator de Crescimento Epidérmico/metabolismo , Gelatina/química , Gelatina/metabolismo , Humanos , Neoplasias Pulmonares/patologia , Masculino , Teste de Materiais , Camundongos , Camundongos SCID , Estrutura Molecular , Nanopartículas/química , Nanopartículas/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA