Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(8): 110409, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39108738

RESUMO

PU.1 (SPI1) is pivotal in hematopoiesis, yet its role in human endothelial-to-hematopoietic transition (EHT) remains unclear. Comparing human in vivo and in vitro EHT transcriptomes revealed SPI1's regulatory role. Knocking down SPI1 during in vitro EHT led to a decrease in the generation of hematopoietic progenitor cells (HPCs) and their differentiation potential. Through multi-omic analysis, we identified KLF1 and LYL1 - transcription factors specific to erythroid/myeloid and lymphoid cells, respectively - as downstream targets of SPI1. Overexpressing KLF1 or LYL1 partially rescues the SPI1 knockdown-induced reduction in HPC formation. Specifically, KLF1 overexpression restores myeloid lineage potential, while LYL1 overexpression re-establishes lymphoid lineage potential. We also observed a SPI1-LYL1 axis in the regulatory network in in vivo EHT. Taken together, our findings shed new light on the role of SPI1 in regulating lineage commitment during EHT, potentially contributing to the heterogeneity of hematopoietic stem cells (HSCs).

2.
Commun Biol ; 6(1): 827, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558796

RESUMO

Hemogenic endothelium (HE) with hematopoietic stem cell (HSC)-forming potential emerge from specialized arterial endothelial cells (AECs) undergoing the endothelial-to-hematopoietic transition (EHT) in the aorta-gonad-mesonephros (AGM) region. Characterization of this AECs subpopulation and whether this phenomenon is conserved across species remains unclear. Here we introduce HomologySeeker, a cross-species method that leverages refined mouse information to explore under-studied human EHT. Utilizing single-cell transcriptomic ensembles of EHT, HomologySeeker reveals a parallel developmental relationship between these two species, with minimal pre-HSC signals observed in human cells. The pre-HE stage contains a conserved bifurcation point between the two species, where cells progress towards HE or late AECs. By harnessing human spatial transcriptomics, we identify ligand modules that contribute to the bifurcation choice and validate CXCL12 in promoting hemogenic choice using a human in vitro differentiation system. Our findings advance human arterial-to-hemogenic transition understanding and offer valuable insights for manipulating HSC generation using in vitro models.


Assuntos
Hemangioblastos , Transcriptoma , Humanos , Camundongos , Animais , Células-Tronco Hematopoéticas , Diferenciação Celular/genética , Aorta
3.
Front Mol Biosci ; 9: 834509, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35254346

RESUMO

[This corrects the article DOI: 10.3389/10.3389/fmolb.2021.692880.].

4.
Front Mol Biosci ; 8: 692880, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434964

RESUMO

RUNX1 is a Runt family transcription factor that plays a critical role in normal hematopoiesis, including the differentiation and proliferation of hematopoietic cells. RUNX1 mutations, including chromosomal translocations, cause abnormal cell differentiation, but the mutation alone is not sufficient to cause leukemia. In MLL-fusion-induced leukemia, dysregulated wild-type RUNX1 can promote leukemia survival. Nevertheless, the underlying mechanisms of dysregulated wild-type RUNX1 in leukemia development have not been fully elucidated. This study overexpressed and knocked down RUNX1 expression in THP-1 human leukemia cells and CD34+ hematopoietic stem/progenitor cells to investigate the biological functions affected by dysregulated RUNX1. Our data indicated RUNX1 facilitated proliferation to promote leukemia cell growth. Furthermore, we demonstrated that RUNX1 knockdown in leukemia cells drastically diminished colony-forming ability. Finally, the RUNX1-knocked down cell depletion phenotype could be rescued by overexpression of CENPE, a cell proliferation gene and a RUNX1 direct target gene. Our results indicate a possible mechanism involving the RUNX1-CENPE axis on promoting leukemic cell growth.

5.
Front Oncol ; 11: 659201, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34123815

RESUMO

Acute myeloid leukemia (AML) refers to a heterogeneous group of hematopoietic malignancies. The well-known European Leukemia Network (ELN) stratifies AML patients into three risk groups, based primarily on the detection of cytogenetic abnormalities. However, the prognosis of cytogenetically normal AML (CN-AML), which is the largest AML subset, can be hard to define. Moreover, the clinical outcomes associated with this subgroup are diverse. In this study, using transcriptome profiles collected from CN-AML patients in the BeatAML cohort, we constructed a robust prognostic Cox model named NEST (Nine-gEne SignaTure). The validity of NEST was confirmed in four external independent cohorts. Moreover, the risk score predicted by the NEST model remained an independent prognostic factor in multivariate analyses. Further analysis revealed that the NEST model was suitable for bone marrow mononuclear cell (BMMC) samples but not peripheral blood mononuclear cell (PBMC) samples, which indirectly indicated subtle differences between BMMCs and PBMCs. Our data demonstrated the robustness and accuracy of the NEST model and implied the importance of the immune dysfunction in the leukemogenesis that occurs in CN-AML, which shed new light on the further exploration of molecular mechanisms and treatment guidance for CN-AML.

6.
Leukemia ; 35(8): 2299-2310, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33483612

RESUMO

ASXL1 is one of the most frequently mutated genes in malignant myeloid diseases. In patients with myeloid malignancies, ASXL1 mutations are usually heterozygous frameshift or nonsense mutations leading to C-terminal truncation. Current disease models have predominantly total loss of ASXL1 or overexpressed C-terminal truncations. These models cannot fully recapitulate leukemogenesis and disease progression. We generated an endogenous C-terminal-truncated Asxl1 mutant in zebrafish that mimics human myeloid malignancies. At the embryonic stage, neutrophil differentiation was explicitly blocked. At 6 months, mutants initially exhibited a myelodysplastic syndrome-like phenotype with neutrophilic dysplasia. At 1 year, about 13% of mutants further acquired the phenotype of monocytosis, which mimics chronic myelomonocytic leukemia, or increased progenitors, which mimics acute myeloid leukemia. These features are comparable to myeloid malignancy progression in humans. Furthermore, transcriptome analysis, inhibitor treatment, and rescue assays indicated that asxl1-induced neutrophilic dysplasia was associated with reduced expression of bmi1a, a subunit of polycomb repressive complex 1 and a reported myeloid leukemia-associated gene. Our model demonstrated that neutrophilic dysplasia caused by asxl1 mutation is a foundation for the progression of myeloid malignancies, and illustrated a possible effect of the Asxl1-Bmi1a axis on regulating neutrophil development.


Assuntos
Embrião não Mamífero/patologia , Leucemia Mieloide Aguda/patologia , Leucemia Mielomonocítica Crônica/patologia , Mutação , Neutrófilos/patologia , Proteínas Repressoras/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Diferenciação Celular , Embrião não Mamífero/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mielomonocítica Crônica/genética , Leucemia Mielomonocítica Crônica/metabolismo , Neutrófilos/metabolismo , Fenótipo , Proteínas Repressoras/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
7.
Nat Commun ; 10(1): 5594, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31811153

RESUMO

Applying somatic cell reprogramming strategies in cancer cell biology is a powerful approach to analyze mechanisms of malignancy and develop new therapeutics. Here, we test whether leukemia cells can be reprogrammed in vivo using the canonical reprogramming transcription factors-Oct4, Sox2, Klf4, and c-Myc (termed as OSKM). Unexpectedly, we discover that OSKM can eradicate leukemia cells and dramatically improve survival of leukemia-bearing mice. By contrast, OSKM minimally impact normal hematopoietic cells. Using ATAC-seq, we find OSKM induce chromatin accessibility near genes encoding apoptotic regulators in leukemia cells. Moreover, this selective effect also involves downregulation of H3K9me3 as an early event. Dissection of the functional effects of OSKM shows that Klf4 and Sox2 play dominant roles compared to c-Myc and Oct4 in elimination of leukemia cells. These results reveal an intriguing paradigm by which OSKM-initiated reprogramming induction can be leveraged and diverged to develop novel anti-cancer strategies.


Assuntos
Apoptose/genética , Apoptose/fisiologia , Reprogramação Celular/genética , Reprogramação Celular/fisiologia , Leucemia/genética , Leucemia/metabolismo , Animais , Medula Óssea , Cromatina , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Células HEK293 , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Células THP-1
8.
Zebrafish ; 16(2): 165-170, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30724719

RESUMO

Interleukin-34 (IL-34) is a known cytokine that plays an important role in the survival, proliferation, and differentiation of macrophages. In previous studies, IL-34 can induce macrophage migration through syndecan-1 or focal adhesion kinase and extracellular signal-related kinase 1 and 2 pathway. These studies mainly focused on in vitro experiments, but the effect of IL-34 on macrophage migration in vivo is less understood. In our study, we artificially induced macrophage, but not neutrophil, enrichment in the skin or liver by overexpressing IL-34 in epidermal cells or hepatocytes in zebrafish. Live imaging showed that the enrichment of macrophages in the liver is due to the direct attraction of macrophages by IL-34. Our results demonstrated that ectopically expressed IL-34 can induce macrophage migration to liver in vivo.


Assuntos
Movimento Celular/genética , Expressão Ectópica do Gene/fisiologia , Interleucinas/genética , Macrófagos/fisiologia , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Animais , Interleucinas/metabolismo , Fígado/fisiologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
9.
Cell ; 149(7): 1461-73, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22726434

RESUMO

How chromatin remodelers cooperate to organize nucleosomes around the start and end of genes is not known. We determined the genome-wide binding of remodeler complexes SWI/SNF, RSC, ISW1a, ISW1b, ISW2, and INO80 to individual nucleosomes in Saccharomyces, and determined their functional contributions to nucleosome positioning through deletion analysis. We applied ultra-high-resolution ChIP-exo mapping to Isw2 to determine its subnucleosomal orientation and organization on a genomic scale. Remodelers interacted with selected nucleosome positions relative to the start and end of genes and produced net directionality in moving nucleosomes either away or toward nucleosome-free regions at the 5' and 3' ends of genes. Isw2 possessed a subnucleosomal organization in accord with biochemical and crystallographic-based models that place its linker binding region within promoters and abutted against Reb1-bound locations. Together, these findings reveal a coordinated position-specific approach taken by remodelers to organize genic nucleosomes into arrays.


Assuntos
Montagem e Desmontagem da Cromatina , Genoma Fúngico , Estudo de Associação Genômica Ampla , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Exodesoxirribonucleases , Técnicas Genéticas , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo
10.
Yeast ; 20(15): 1255-62, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14618563

RESUMO

Regulatable promoters are commonly used to control the expression of, especially, essential genes in a conditional manner. Integration of such promoters upstream of an ORF using one-step PCR-mediated homologous recombination should be particularly efficient. However, integration of the original KanMX4-tetO promoter cassette (Belli et al., 1998a) into the relatively short upstream regions of many yeast genes is often problematic, presumably due to the size (3.9 kb) of the replacement cassette. We have created a new, shorter, KanMX4-tetO cassette by removing the transactivator (tTA) sequence from the original cassette. The transactivator (tTA) has been integrated into the yeast genome to create a new strain for use with the new system, which has a greatly increased efficiency of promoter substitution. With it, we have been able to create strains that could not be made with the original cassette. To increase the throughput of promoter substitutions, we have developed a new assay for testing doxycycline sensitivity, based on liquid culture using microtitre trays. Altogether, the components of this new 'tool kit' greatly increase the efficiency of systematic promoter substitutions.


Assuntos
Proteínas de Ligação a DNA , Mutagênese Insercional/métodos , Saccharomyces cerevisiae/genética , Transformação Genética/genética , Antibacterianos/farmacologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA Fúngico/química , DNA Fúngico/genética , Doxiciclina/farmacologia , Regulação Fúngica da Expressão Gênica , Genes Essenciais/genética , Genes Essenciais/fisiologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Securina , Transativadores/genética , Transativadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA