RESUMO
During ischemic heart failure (IHF), cardiac muscle contraction is typically impaired, though the molecular changes within the myocardium are not fully understood. Thus, we aimed to characterize the biophysical properties of cardiac myosin in IHF. Cardiac tissue was harvested from 10 age-matched males, either with a history of IHF or nonfailing (NF) controls that had no history of structural or functional cardiac abnormalities. Clinical measures before cardiac biopsy demonstrated significant differences in measures of ejection fraction and left ventricular dimensions. Myofibrils and myosin were extracted from left ventricular free wall cardiac samples. There were no changes in myofibrillar ATPase activity or calcium sensitivity between groups. Using isolated myosin, we found a 15% reduction in the IHF group in actin sliding velocity in the in vitro motility assay, which was observed in the absence of a myosin isoform shift. Oxidative damage (carbonylation) of isolated myosin was compared, in which there were no significant differences between groups. Synthetic thick filaments were formed from purified myosin and the ATPase activity was similar in both basal and actin-activated conditions (20 µM actin). Correlation analysis and Deming linear regression were performed between all studied parameters, in which we found statistically significant correlations between clinical measures of contractility with molecular measures of sliding velocity and ELC carbonylation. Our data indicate that subtle deficits in myosin mechanochemical properties are associated with reduced contractile function and pathological remodeling of the heart, suggesting that the myosin motor may be an effective pharmacological intervention in ischemia.NEW & NOTEWORTHY Ischemic heart failure is associated with impairments in contractile performance of the heart. This study revealed that cardiac myosin isolated from patients with ischemic heart failure had reduced mechanical activity, which correlated with the impaired clinical phenotype of the patients. The results suggest that restoring myosin function with pharmacological intervention may be a viable method for therapeutic intervention.
Assuntos
Insuficiência Cardíaca , Disfunção Ventricular Esquerda , Masculino , Humanos , Actinas , Miosinas Cardíacas , Miocárdio , Miosinas , Miofibrilas , Contração MiocárdicaRESUMO
Fluorescence resonance energy transfer (FRET) experiments were carried out in the absence of nucleotide (rigor) or in the presence of MgADP between fluorescent donor probes (IAEDANS (5((((2-iodoacetyl)amino)ethyl)amino)-naphthalene-1-sulfonic acid) at Cys-374 or DANSYL (5-dimethylamino naphthalene-1-(N-(5-aminopentyl))sulfonamide) at Gln-41 of actin and acceptor molecules (FHS (6-[fluorescein-5(and 6)-carboxamido] hexanoic acid succinimidyl ester) at Lys-553 of skeletal muscle myosin subfragment 1. The critical Förster distance (R(0)) was determined to be 44 and 38 A for the IAEDANS-FHS and DANSYL-FHS donor-acceptor pairs, respectively. The efficiency of energy transfer between the acceptor molecules at Lys-553 of myosin and donor probes at Cys-374 or Gln-41 of actin was calculated to be 0.78 +/- 0.01 or 0.94 +/- 0.01, respectively, corresponding to distances of 35.6 +/- 0.4 A and 24.0 +/- 1.6 A, respectively. MgADP had no significant effect on the distances observed in rigor. Thus, rearrangements in the acto-myosin interface are likely to occur elsewhere than in the lower 50-kDa subdomain of myosin as its affinity for actin is weakened by MgADP binding.
Assuntos
Actinas/química , Miosinas/química , Actinas/metabolismo , Difosfato de Adenosina/metabolismo , Difosfato de Adenosina/farmacologia , Animais , Sítios de Ligação , Compostos de Dansil , Desoxirribonuclease I/metabolismo , Corantes Fluorescentes , Técnicas In Vitro , Lisina/química , Substâncias Macromoleculares , Modelos Moleculares , Miosinas/metabolismo , Naftalenossulfonatos , Coelhos , Espectrometria de FluorescênciaRESUMO
To examine the structural basis of the intrinsic fluorescence changes that occur during the MgATPase cycle of myosin, we generated three mutants of smooth muscle myosin motor domain essential light chain (MDE) containing a single conserved tryptophan residue located at Trp-441 (W441-MDE), Trp-512 (W512-MDE), or Trp-597 (W597-MDE). Although W441- and W597-MDE were insensitive to nucleotide binding, the fluorescence intensity of W512-MDE increased in the presence of MgADP-berellium fluoride (BeF(X)) (31%), MgADP-AlF(4)(-) (31%), MgATP (36%), and MgADP (30%) compared with the nucleotide-free environment (rigor), which was similar to the results of wild type-MDE. Thus, Trp-512 may be the sole ATP-sensitive tryptophan residue in myosin. In addition, acrylamide quenching indicated that Trp-512 was more protected from solvent in the presence of MgATP or MgADP-AlF(4)(-) than in the presence of MgADP-BeF(X), MgADP, or in rigor. Furthermore, the degree of energy transfer from Trp-512 to 2'(3')-O-(N-methylanthraniloyl)-labeled nucleotides was greater in the presence of MgADP-BeF(X), MgATP, or MgADP-AlF(4)(-) than MgADP. We conclude that the conformation of the rigid relay loop containing Trp-512 is altered upon MgATP hydrolysis and during the transition from weak to strong actin binding, establishing a communication pathway from the active site to the actin-binding and converter/lever arm regions of myosin during muscle contraction.
Assuntos
ATPase de Ca(2+) e Mg(2+)/metabolismo , Músculo Liso/química , Miosinas/química , Triptofano/metabolismo , Actinas/metabolismo , Animais , Sítios de Ligação , Cristalografia por Raios X , DNA Complementar/metabolismo , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Cadeias Pesadas de Miosina/química , Conformação Proteica , Isoformas de Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrometria de FluorescênciaRESUMO
The helix-loop-helix (A-site) and myopathy loop (R-site) are located on opposite sides of the cleft that separates the proposed actin-binding interface of myosin. To investigate the structural features of the A- and R-sites, we engineered two mutants of the smooth muscle myosin motor domain with the essential light chain (MDE), containing a single tryptophan located either in the A-site (W546-MDE) or in the R-site (V413W MDE). W546- and V413W-MDE display actin-activated ATPase and actin-binding properties similar to those of wild-type MDE. The steady-state fluorescence properties of W546-MDE [emission peak (lambda(max)) = 344, quantum yield = 0.20, and acrylamide bimolecular quenching constant (k(q)) = 6.4 M(-)(1). ns(-)(1)] and V413W-MDE [lambda(max) = 338, quantum yield = 0.27, and k(q) = 3.6 M(-)(1).ns(-)(1)] demonstrate that Trp-546 and Trp-413 are nearly fully exposed to solvent, in agreement with the crystallographic data on these residues. In the presence of actin, Trp-546 shifts to a more buried environment in both the ADP-bound and nucleotide-free (rigor) actomyosin complexes, as indicated by an average lambda(max) of 337 or 336 nm, respectively, and protection from dimethyl(2-hydroxy-5-nitrobenzyl)sulfonium bromide (DHNBS) oxidation. In contrast, Trp-413 has a single conformation with an average lambda(max) of 338 nm in the ADP-bound complex, but in the rigor complex it is 50% more accessible to DHNBS oxidation and can adopt a range of possible conformations (lambda(max) = 341-347 nm). Our results suggest a structural model in which the A-site remains tightly bound to actin and the R-site adopts a more flexible and solvent-exposed conformation upon ADP release.
Assuntos
Actomiosina/química , Actinas/metabolismo , Actomiosina/genética , Actomiosina/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Sítios de Ligação , Técnicas In Vitro , Microscopia Eletrônica , Modelos Moleculares , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/metabolismo , Músculo Liso/química , Músculo Liso/metabolismo , Conformação Proteica , Engenharia de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência , TriptofanoRESUMO
Elucidation of the molecular details of the cyclic actomyosin interaction requires the ability to examine structural changes at specific sites in the actin-binding interface of myosin. To study these changes dynamically, we have expressed two mutants of a truncated fragment of chicken gizzard smooth muscle myosin, which includes the motor domain and essential light chain (MDE). These mutants were engineered to contain a single tryptophan at (Trp-546) or near (Trp-625) the putative actin-binding interface. Both 546- and 625-MDE exhibited actin-activated ATPase and actin-binding activities similar to wild-type MDE. Fluorescence emission spectra and acrylamide quenching of 546- and 625-MDE suggest that Trp-546 is nearly fully exposed to solvent and Trp-625 is less than 50% exposed in the presence and absence of ATP, in good agreement with the available crystal structure data. The spectrum of 625-MDE bound to actin was quite similar to the unbound spectrum indicating that, although Trp-625 is located near the 50/20-kDa loop and the 50-kDa cleft of myosin, its conformation does not change upon actin binding. However, a 10-nm blue shift in the peak emission wavelength of 546-MDE observed in the presence of actin indicates that Trp-546, located in the A-site of the lower 50-kDa subdomain of myosin, exists in a more buried environment and may directly interact with actin in the rigor acto-S1 complex. This change in the spectrum of Trp-546 constitutes direct evidence for a specific molecular interaction between residues in the A-site of myosin and actin.