Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nat Genet ; 56(5): 767-777, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38689000

RESUMO

We develop a method, SBayesRC, that integrates genome-wide association study (GWAS) summary statistics with functional genomic annotations to improve polygenic prediction of complex traits. Our method is scalable to whole-genome variant analysis and refines signals from functional annotations by allowing them to affect both causal variant probability and causal effect distribution. We analyze 50 complex traits and diseases using ∼7 million common single-nucleotide polymorphisms (SNPs) and 96 annotations. SBayesRC improves prediction accuracy by 14% in European ancestry and up to 34% in cross-ancestry prediction compared to the baseline method SBayesR, which does not use annotations, and outperforms other methods, including LDpred2, LDpred-funct, MegaPRS, PolyPred-S and PRS-CSx. Investigation of factors affecting prediction accuracy identifies a significant interaction between SNP density and annotation information, suggesting whole-genome sequence variants with annotations may further improve prediction. Functional partitioning analysis highlights a major contribution of evolutionary constrained regions to prediction accuracy and the largest per-SNP contribution from nonsynonymous SNPs.


Assuntos
Estudo de Associação Genômica Ampla , Anotação de Sequência Molecular , Herança Multifatorial , Polimorfismo de Nucleotídeo Único , Herança Multifatorial/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Anotação de Sequência Molecular/métodos , Genômica/métodos , Genoma Humano , Modelos Genéticos
2.
Hum Reprod ; 39(1): 240-257, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052102

RESUMO

STUDY QUESTION: Which genetic factors regulate female propensity for giving birth to spontaneous dizygotic (DZ) twins? SUMMARY ANSWER: We identified four new loci, GNRH1, FSHR, ZFPM1, and IPO8, in addition to previously identified loci, FSHB and SMAD3. WHAT IS KNOWN ALREADY: The propensity to give birth to DZ twins runs in families. Earlier, we reported that FSHB and SMAD3 as associated with DZ twinning and female fertility measures. STUDY DESIGN, SIZE, DURATION: We conducted a genome-wide association meta-analysis (GWAMA) of mothers of spontaneous dizygotic (DZ) twins (8265 cases, 264 567 controls) and of independent DZ twin offspring (26 252 cases, 417 433 controls). PARTICIPANTS/MATERIALS, SETTING, METHODS: Over 700 000 mothers of DZ twins, twin individuals and singletons from large cohorts in Australia/New Zealand, Europe, and the USA were carefully screened to exclude twins born after use of ARTs. Genetic association analyses by cohort were followed by meta-analysis, phenome wide association studies (PheWAS), in silico and in vivo annotations, and Zebrafish functional validation. MAIN RESULTS AND THE ROLE OF CHANCE: This study enlarges the sample size considerably from previous efforts, finding four genome-wide significant loci, including two novel signals and a further two novel genes that are implicated by gene level enrichment analyses. The novel loci, GNRH1 and FSHR, have well-established roles in female reproduction whereas ZFPM1 and IPO8 have not previously been implicated in female fertility. We found significant genetic correlations with multiple aspects of female reproduction and body size as well as evidence for significant selection against DZ twinning during human evolution. The 26 top single nucleotide polymorphisms (SNPs) from our GWAMA in European-origin participants weakly predicted the crude twinning rates in 47 non-European populations (r = 0.23 between risk score and population prevalence, s.e. 0.11, 1-tail P = 0.058) indicating that genome-wide association studies (GWAS) are needed in African and Asian populations to explore the causes of their respectively high and low DZ twinning rates. In vivo functional tests in zebrafish for IPO8 validated its essential role in female, but not male, fertility. In most regions, risk SNPs linked to known expression quantitative trait loci (eQTLs). Top SNPs were associated with in vivo reproductive hormone levels with the top pathways including hormone ligand binding receptors and the ovulation cycle. LARGE SCALE DATA: The full DZT GWAS summary statistics will made available after publication through the GWAS catalog (https://www.ebi.ac.uk/gwas/). LIMITATIONS, REASONS FOR CAUTION: Our study only included European ancestry cohorts. Inclusion of data from Africa (with the highest twining rate) and Asia (with the lowest rate) would illuminate further the biology of twinning and female fertility. WIDER IMPLICATIONS OF THE FINDINGS: About one in 40 babies born in the world is a twin and there is much speculation on why twinning runs in families. We hope our results will inform investigations of ovarian response in new and existing ARTs and the causes of female infertility. STUDY FUNDING/COMPETING INTEREST(S): Support for the Netherlands Twin Register came from the Netherlands Organization for Scientific Research (NWO) and The Netherlands Organization for Health Research and Development (ZonMW) grants, 904-61-193, 480-04-004, 400-05-717, Addiction-31160008, 911-09-032, Biobanking and Biomolecular Resources Research Infrastructure (BBMRI.NL, 184.021.007), Royal Netherlands Academy of Science Professor Award (PAH/6635) to DIB, European Research Council (ERC-230374), Rutgers University Cell and DNA Repository (NIMH U24 MH068457-06), the Avera Institute, Sioux Falls, South Dakota (USA) and the National Institutes of Health (NIH R01 HD042157-01A1) and the Genetic Association Information Network (GAIN) of the Foundation for the National Institutes of Health and Grand Opportunity grants 1RC2 MH089951. The QIMR Berghofer Medical Research Institute (QIMR) study was supported by grants from the National Health and Medical Research Council (NHMRC) of Australia (241944, 339462, 389927, 389875, 389891, 389892, 389938, 443036, 442915, 442981, 496610, 496739, 552485, 552498, 1050208, 1075175). L.Y. is funded by Australian Research Council (Grant number DE200100425). The Minnesota Center for Twin and Family Research (MCTFR) was supported in part by USPHS Grants from the National Institute on Alcohol Abuse and Alcoholism (AA09367 and AA11886) and the National Institute on Drug Abuse (DA05147, DA13240, and DA024417). The Women's Genome Health Study (WGHS) was funded by the National Heart, Lung, and Blood Institute (HL043851 and HL080467) and the National Cancer Institute (CA047988 and UM1CA182913), with support for genotyping provided by Amgen. Data collection in the Finnish Twin Registry has been supported by the Wellcome Trust Sanger Institute, the Broad Institute, ENGAGE-European Network for Genetic and Genomic Epidemiology, FP7-HEALTH-F4-2007, grant agreement number 201413, National Institute of Alcohol Abuse and Alcoholism (grants AA-12502, AA-00145, AA-09203, AA15416, and K02AA018755) and the Academy of Finland (grants 100499, 205585, 118555, 141054, 264146, 308248, 312073 and 336823 to J. Kaprio). TwinsUK is funded by the Wellcome Trust, Medical Research Council, Versus Arthritis, European Union Horizon 2020, Chronic Disease Research Foundation (CDRF), Zoe Ltd and the National Institute for Health Research (NIHR) Clinical Research Network (CRN) and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London. For NESDA, funding was obtained from the Netherlands Organization for Scientific Research (Geestkracht program grant 10000-1002), the Center for Medical Systems Biology (CSMB, NVVO Genomics), Biobanking and Biomolecular Resources Research Infrastructure (BBMRI-NL), VU University's Institutes for Health and Care Research (EMGO+) and Neuroscience Campus Amsterdam, University Medical Center Groningen, Leiden University Medical Center, National Institutes of Health (NIH, ROI D0042157-01A, MH081802, Grand Opportunity grants 1 RC2 Ml-1089951 and IRC2 MH089995). Part of the genotyping and analyses were funded by the Genetic Association Information Network (GAIN) of the Foundation for the National Institutes of Health. Computing was supported by BiG Grid, the Dutch e-Science Grid, which is financially supported by NWO. Work in the Del Bene lab was supported by the Programme Investissements d'Avenir IHU FOReSIGHT (ANR-18-IAHU-01). C.R. was supported by an EU Horizon 2020 Marie Sklodowska-Curie Action fellowship (H2020-MSCA-IF-2014 #661527). H.S. and K.S. are employees of deCODE Genetics/Amgen. The other authors declare no competing financial interests. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Fertilidade , Estudo de Associação Genômica Ampla , Gemelação Dizigótica , Animais , Feminino , Humanos , Gravidez , Proteínas de Transporte/genética , Fertilidade/genética , Hormônios , Proteínas/genética , Estados Unidos , Peixe-Zebra/genética
3.
Clin Res Cardiol ; 112(2): 247-257, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35987817

RESUMO

BACKGROUND: The joint contribution of genetic and environmental exposures to noncommunicable diseases is not well characterized. OBJECTIVES: We modeled the cumulative effects of common risk alleles and their prevalence variations with classical risk factors. METHODS: We analyzed mathematically and statistically numbers and effect sizes of established risk alleles for coronary artery disease (CAD) and other conditions. RESULTS: In UK Biobank, risk alleles counts in the lowest (175.4) and highest decile (205.7) of the distribution differed by only 16.9%, which nevertheless increased CAD prevalence 3.4-fold (p < 0.01). Irrespective of the affected gene, a single risk allele multiplied the effects of all others carried by a person, resulting in a 2.9-fold stronger effect size in the top versus the bottom decile (p < 0.01) and an exponential increase in risk (R > 0.94). Classical risk factors shifted effect sizes to the steep upslope of the logarithmic function linking risk allele numbers with CAD prevalence. Similar phenomena were observed in the Estonian Biobank and for risk alleles affecting diabetes mellitus, breast and prostate cancer. CONCLUSIONS: Alleles predisposing to common diseases can be carried safely in large numbers, but few additional ones lead to sharp risk increments. Here, we describe exponential functions by which risk alleles combine interchangeably but multiplicatively with each other and with modifiable risk factors to affect prevalence. Our data suggest that the biological systems underlying these diseases are modulated by hundreds of genes but become only fragile when a narrow window of total risk, irrespective of its genetic or environmental origins, has been passed.


Assuntos
Doença da Artéria Coronariana , Interação Gene-Ambiente , Predisposição Genética para Doença , Humanos , Doença da Artéria Coronariana/epidemiologia , Doença da Artéria Coronariana/etiologia , Doença da Artéria Coronariana/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Alelos , Reino Unido/epidemiologia , Prevalência
4.
Sci Rep ; 11(1): 6197, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737653

RESUMO

The number of people affected by Type 2 diabetes mellitus (T2DM) is close to half a billion and is on a sharp rise, representing a major and growing public health burden. Given its mild initial symptoms, T2DM is often diagnosed several years after its onset, leaving half of diabetic individuals undiagnosed. While several classical clinical and genetic biomarkers have been identified, improving early diagnosis by exploring other kinds of omics data remains crucial. In this study, we have combined longitudinal data from two population-based cohorts CoLaus and DESIR (comprising in total 493 incident cases vs. 1360 controls) to identify new or confirm previously implicated metabolomic biomarkers predicting T2DM incidence more than 5 years ahead of clinical diagnosis. Our longitudinal data have shown robust evidence for valine, leucine, carnitine and glutamic acid being predictive of future conversion to T2DM. We confirmed the causality of such association for leucine by 2-sample Mendelian randomisation (MR) based on independent data. Our MR approach further identified new metabolites potentially playing a causal role on T2D, including betaine, lysine and mannose. Interestingly, for valine and leucine a strong reverse causal effect was detected, indicating that the genetic predisposition to T2DM may trigger early changes of these metabolites, which appear well-before any clinical symptoms. In addition, our study revealed a reverse causal effect of metabolites such as glutamic acid and alanine. Collectively, these findings indicate that molecular traits linked to the genetic basis of T2DM may be particularly promising early biomarkers.


Assuntos
Carnitina/sangue , Diabetes Mellitus Tipo 2/diagnóstico , Predisposição Genética para Doença , Ácido Glutâmico/sangue , Leucina/sangue , Metaboloma/genética , Valina/sangue , Adulto , Idoso , Betaína/sangue , Betaína/urina , Biomarcadores/sangue , Biomarcadores/urina , Carnitina/urina , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/urina , Diagnóstico Precoce , Feminino , Ácido Glutâmico/urina , Humanos , Leucina/urina , Lisina/sangue , Lisina/urina , Masculino , Manose/sangue , Manose/urina , Análise da Randomização Mendeliana , Pessoa de Meia-Idade , Valina/urina
5.
Hum Mol Genet ; 28(1): 166-174, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30239722

RESUMO

More than one in three adults worldwide is either overweight or obese. Epidemiological studies indicate that the location and distribution of excess fat, rather than general adiposity, are more informative for predicting risk of obesity sequelae, including cardiometabolic disease and cancer. We performed a genome-wide association study meta-analysis of body fat distribution, measured by waist-to-hip ratio (WHR) adjusted for body mass index (WHRadjBMI), and identified 463 signals in 346 loci. Heritability and variant effects were generally stronger in women than men, and we found approximately one-third of all signals to be sexually dimorphic. The 5% of individuals carrying the most WHRadjBMI-increasing alleles were 1.62 times more likely than the bottom 5% to have a WHR above the thresholds used for metabolic syndrome. These data, made publicly available, will inform the biology of body fat distribution and its relationship with disease.


Assuntos
Adiposidade/genética , Distribuição da Gordura Corporal/métodos , Obesidade/genética , Tecido Adiposo/fisiologia , Adulto , Alelos , Índice de Massa Corporal , Feminino , Frequência do Gene/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética , Relação Cintura-Quadril , População Branca/genética
6.
PLoS One ; 12(6): e0179583, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28628672

RESUMO

Bisphenol A (BPA) exposure has been suspected to be associated with deleterious effects on health including obesity and metabolically-linked diseases. Although bisphenols F (BPF) and S (BPS) are BPA structural analogs commonly used in many marketed products as a replacement for BPA, only sparse toxicological data are available yet. Our objective was to comprehensively characterize bisphenols gene targets in a human primary adipocyte model, in order to determine whether they may induce cellular dysfunction, using chronic exposure at two concentrations: a "low-dose" similar to the dose usually encountered in human biological fluids and a higher dose. Therefore, BPA, BPF and BPS have been added at 10 nM or 10 µM during the differentiation of human primary adipocytes from subcutaneous fat of three non-diabetic Caucasian female patients. Gene expression (mRNA/lncRNA) arrays and microRNA arrays, have been used to assess coding and non-coding RNA changes. We detected significantly deregulated mRNA/lncRNA and miRNA at low and high doses. Enrichment in "cancer" and "organismal injury and abnormalities" related pathways was found in response to the three products. Some long intergenic non-coding RNAs and small nucleolar RNAs were differentially expressed suggesting that bisphenols may also activate multiple cellular processes and epigenetic modifications. The analysis of upstream regulators of deregulated genes highlighted hormones or hormone-like chemicals suggesting that BPS and BPF can be suspected to interfere, just like BPA, with hormonal regulation and have to be considered as endocrine disruptors. All these results suggest that as BPA, its substitutes BPS and BPF should be used with the same restrictions.


Assuntos
Compostos Benzidrílicos/toxicidade , Regulação para Baixo/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Fenóis/toxicidade , RNA não Traduzido/metabolismo , Regulação para Cima/efeitos dos fármacos , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Compostos Benzidrílicos/química , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Bases de Dados Factuais , Humanos , Fenóis/química , RNA Mensageiro/metabolismo , Sulfonas
7.
PLoS One ; 11(6): e0158051, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27327770

RESUMO

BACKGROUND: An increase of plasma kynurenine concentrations, potentially bioactive metabolites of tryptophan, was found in subjects with obesity, resulting from low-grade inflammation of the white adipose tissue. Bariatric surgery decreases low-grade inflammation associated with obesity and improves glucose control. OBJECTIVE: Our goal was to determine the concentrations of all kynurenine metabolites after bariatric surgery and whether they were correlated with glucose control improvement. DESIGN: Kynurenine metabolite concentrations, analysed by liquid or gas chromatography coupled with tandem mass spectrometry, circulating inflammatory markers, metabolic traits, and BMI were measured before and one year after bariatric surgery in 44 normoglycemic and 47 diabetic women with obesity. Associations between changes in kynurenine metabolites concentrations and in glucose control and metabolic traits were analysed between baseline and twelve months after surgery. RESULTS: Tryptophan and kynurenine metabolite concentrations were significantly decreased one year after bariatric surgery and were correlated with the decrease of the usCRP in both groups. Among all the kynurenine metabolites evaluated, only quinolinic acid and xanthurenic acid were significantly associated with glucose control improvement. The one year delta of quinolinic acid concentrations was negatively associated with the delta of fasting glucose (p = 0.019) and HbA1c (p = 0.014), whereas the delta of xanthurenic acid was positively associated with the delta of insulin sensitivity index (p = 0.0018). CONCLUSION: Bariatric surgery has induced a global down-regulation of kynurenine metabolites, associated with weight loss. Our results suggest that, since kynurenine monoxygenase diverts the kynurenine pathway toward the synthesis of xanthurenic acid, its inhibition may also contribute to glucose homeostasis.


Assuntos
Cirurgia Bariátrica , Glucose/metabolismo , Homeostase , Ácido Quinolínico/sangue , Xanturenatos/sangue , Adulto , Proteína C-Reativa/metabolismo , Diabetes Mellitus/sangue , Feminino , Humanos , Cinurenina/sangue , Metaboloma , Serotonina/sangue , Triptofano/sangue
8.
Hum Mol Genet ; 25(10): 2070-2081, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26911676

RESUMO

To gain insight into potential regulatory mechanisms through which the effects of variants at four established type 2 diabetes (T2D) susceptibility loci (CDKAL1, CDKN2A-B, IGF2BP2 and KCNQ1) are mediated, we undertook transancestral fine-mapping in 22 086 cases and 42 539 controls of East Asian, European, South Asian, African American and Mexican American descent. Through high-density imputation and conditional analyses, we identified seven distinct association signals at these four loci, each with allelic effects on T2D susceptibility that were homogenous across ancestry groups. By leveraging differences in the structure of linkage disequilibrium between diverse populations, and increased sample size, we localised the variants most likely to drive each distinct association signal. We demonstrated that integration of these genetic fine-mapping data with genomic annotation can highlight potential causal regulatory elements in T2D-relevant tissues. These analyses provide insight into the mechanisms through which T2D association signals are mediated, and suggest future routes to understanding the biology of specific disease susceptibility loci.


Assuntos
Mapeamento Cromossômico , Diabetes Mellitus Tipo 2/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Negro ou Afro-Americano/genética , Alelos , Povo Asiático/genética , Inibidor p16 de Quinase Dependente de Ciclina , Inibidor de Quinase Dependente de Ciclina p18/genética , Diabetes Mellitus Tipo 2/patologia , Feminino , Humanos , Canal de Potássio KCNQ1/genética , Desequilíbrio de Ligação , Masculino , Polimorfismo de Nucleotídeo Único , Proteínas de Ligação a RNA/genética , Elementos Reguladores de Transcrição/genética , População Branca/genética , tRNA Metiltransferases/genética
9.
Surg Obes Relat Dis ; 10(4): 679-83, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25224167

RESUMO

BACKGROUND: Roux-en-Y gastric bypass (RYGB) surgery improves glucose control in most but not all patients with type 2 diabetes mellitus (T2 DM). Transcription factor 7-like 2 (TCF7 L2) gene variation (rs7903146, C: wild-type allele, T: risk-allele) is the strongest contributor to T2 DM risk. Until now, there are no studies investigating gene interactions with changes of glycemia in obese patients with T2 DM after RYGB. The objective of this study was to assess the effect of TCF7 L2 genotype on RYGB-induced changes in glucose homeostasis in 99 obese patients with T2 DM at 1-year follow-up. METHODS: Body mass index (BMI) and fasting blood glucose (FBG) were measured before and 1, 3, 6, and 12 months after RYGB. Genotyping was performed with TaqMan technology. The effect of the interaction between TCF7 L2 genotype and postoperative time on BMI and FBG changes was analyzed with a linear mixed model. RESULTS: Preoperatively, there was no difference in BMI, FBG, and other diabetes associated traits between homozygous (CC) (n = 49) and heterozygous (CT) or homozygous (TT) T risk-allele carriers (n = 50). One year after RYGB, 48 out of 99 patients had glycosylated hemoglobin (HbA1 c) lower than 6.5% in absence of any antidiabetic medication. BMI decreased similarly in both groups (P = .769, genotype-time interaction), however, the decrease in FBG over time was lower in T risk-allele carriers (P = .016, genotype-time interaction). At 1 year, FBG was 6.42 ± 2.98 mmol/L in CT/TT versus 5.36 ± 0.98 mmol/L in CC (P = .022, t test). CONCLUSION: TCF7 L2 gene variation affected the decrease of FBG after RYGB in obese patients with T2 DM, independently of weight loss.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Tipo 2/genética , Derivação Gástrica , Obesidade Mórbida/sangue , Obesidade Mórbida/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Adulto , Idoso , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade Mórbida/cirurgia , Polimorfismo Genético/genética , Fatores de Tempo , Redução de Peso , Adulto Jovem
10.
Int J Cancer ; 135(2): 401-12, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24318358

RESUMO

Coffee and tea contain numerous antimutagenic and antioxidant components and high levels of caffeine that may protect against colorectal cancer (CRC). We investigated the association between coffee and tea consumption and CRC risk and studied potential effect modification by CYP1A2 and NAT2 genotypes, enzymes involved in the metabolization of caffeine. Data from 477,071 participants (70.2% female) of the European Investigation into Cancer and Nutrition (EPIC) cohort study were analyzed. At baseline (1992-2000) habitual (total, caffeinated and decaffeinated) coffee and tea consumption was assessed with dietary questionnaires. Cox proportional hazards models were used to estimate adjusted hazard ratio's (HR) and 95% confidence intervals (95% CI). Potential effect modification by genotype-based CYP1A2 and NAT2 activity was studied in a nested case-control set of 1,252 cases and 2,175 controls. After a median follow-up of 11.6 years, 4,234 participants developed CRC (mean age 64.7 ± 8.3 years). Total coffee consumption (high vs. non/low) was not associated with CRC risk (HR 1.06, 95% CI 0.95-1.18) or subsite cancers, and no significant associations were found for caffeinated (HR 1.10, 95% CI 0.97-1.26) and decaffeinated coffee (HR 0.96, 95% CI 0.84-1.11) and tea (HR 0.97, 95% CI 0.86-1.09). High coffee and tea consuming subjects with slow CYP1A2 or NAT2 activity had a similar CRC risk compared to non/low coffee and tea consuming subjects with a fast CYP1A2 or NAT2 activity, which suggests that caffeine metabolism does not affect the link between coffee and tea consumption and CRC risk. This study shows that coffee and tea consumption is not likely to be associated with overall CRC.


Assuntos
Arilamina N-Acetiltransferase/genética , Café/efeitos adversos , Neoplasias Colorretais/genética , Citocromo P-450 CYP1A2/genética , Chá/efeitos adversos , Adulto , Idoso , Cafeína/metabolismo , Estudos de Casos e Controles , Café/metabolismo , Estudos de Coortes , Neoplasias Colorretais/epidemiologia , Feminino , Predisposição Genética para Doença/genética , Genótipo , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Modelos de Riscos Proporcionais , Fatores de Risco , Inquéritos e Questionários , Chá/metabolismo
11.
Nat Genet ; 45(9): 1040-3, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23852171

RESUMO

Large chromosomal clonal mosaic events (CMEs) have been suggested to be linked to aging and to predict cancer. Type 2 diabetes (T2D) has been conceptualized as an accelerated-aging disease and is associated with higher prevalence of cancers. Here we aimed to assess the association between T2D and CME occurrence in blood. We evaluated the presence of CMEs in 7,659 individuals (including 2,208 with T2D) using DNA arrays. A significant association between CME occurrence and T2D was found (odds ratio (OR) = 5.3; P = 5.1 × 10(-5)) and was stronger when we only considered non-obese individuals with T2D (OR = 5.6; P = 4.9 × 10(-5)). Notably, CME carriers with T2D had higher prevalence of vascular complications than non-carriers with T2D (71.4% versus 37.1%, respectively; P = 7.7 × 10(-4)). In CME carriers, we found an increase in the percentage of abnormal cells over 6 years (P = 8.60 × 10(-3)). In conclusion, given the increased risk of cancer in CME carriers, our results may have profound clinical implications in patients with severe T2D.


Assuntos
Diabetes Mellitus Tipo 2/genética , Angiopatias Diabéticas/genética , Estudos de Associação Genética , Mosaicismo , Idoso , Índice de Massa Corporal , Estudos de Casos e Controles , Aberrações Cromossômicas , Mapeamento Cromossômico , Diabetes Mellitus Tipo 2/complicações , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Razão de Chances , Estudos Prospectivos
12.
Nature ; 483(7389): 350-4, 2012 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-22343897

RESUMO

Free fatty acids provide an important energy source as nutrients, and act as signalling molecules in various cellular processes. Several G-protein-coupled receptors have been identified as free-fatty-acid receptors important in physiology as well as in several diseases. GPR120 (also known as O3FAR1) functions as a receptor for unsaturated long-chain free fatty acids and has a critical role in various physiological homeostasis mechanisms such as adipogenesis, regulation of appetite and food preference. Here we show that GPR120-deficient mice fed a high-fat diet develop obesity, glucose intolerance and fatty liver with decreased adipocyte differentiation and lipogenesis and enhanced hepatic lipogenesis. Insulin resistance in such mice is associated with reduced insulin signalling and enhanced inflammation in adipose tissue. In human, we show that GPR120 expression in adipose tissue is significantly higher in obese individuals than in lean controls. GPR120 exon sequencing in obese subjects reveals a deleterious non-synonymous mutation (p.R270H) that inhibits GPR120 signalling activity. Furthermore, the p.R270H variant increases the risk of obesity in European populations. Overall, this study demonstrates that the lipid sensor GPR120 has a key role in sensing dietary fat and, therefore, in the control of energy balance in both humans and rodents.


Assuntos
Obesidade/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Adipócitos/metabolismo , Adipócitos/patologia , Adipogenia , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Sinalização do Cálcio , Diferenciação Celular , Análise Mutacional de DNA , Dieta Hiperlipídica , Metabolismo Energético , Europa (Continente)/etnologia , Éxons/genética , Fígado Gorduroso/complicações , Fígado Gorduroso/genética , Regulação da Expressão Gênica , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucose/metabolismo , Intolerância à Glucose/complicações , Humanos , Insulina/metabolismo , Resistência à Insulina , Lipogênese , Fígado/metabolismo , Macrófagos/metabolismo , Camundongos , Mutação/genética , Obesidade/complicações , Obesidade/genética , Obesidade/patologia , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/genética , População Branca/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA