Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(23): 27670-27686, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37262346

RESUMO

An improved vaccine is urgently needed to replace the now more than 100-year-old Bacillus Calmette-Guérin (BCG) vaccine against tuberculosis (TB) disease, which represents a significant burden on global public health. Mycolic acid, or cord factor trehalose 6,6' dimycolate (TDM), a lipid component abundant in the cell wall of the pathogen Mycobacterium tuberculosis (MTB), has been shown to have strong immunostimulatory activity but remains underexplored due to its high toxicity and poor solubility. Herein, we employed a novel strategy to encapsulate TDM within a cubosome lipid nanocarrier as a potential subunit nanovaccine candidate against TB. This strategy not only increased the solubility and reduced the toxicity of TDM but also elicited a protective immune response to control MTB growth in macrophages. Both pre-treatment and concurrent treatment of the TDM encapsulated in lipid monoolein (MO) cubosomes (MO-TDM) (1 mol %) induced a strong proinflammatory cytokine response in MTB-infected macrophages, due to epigenetic changes at the promoters of tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) in comparison to the untreated control. Furthermore, treatment with MO-TDM (1 mol %) cubosomes significantly improved antigen processing and presentation capabilities of MTB-infected macrophages to CD4 T cells. The ability of MO-TDM (1 mol %) cubosomes to induce a robust innate and adaptive response in vitro was further supported by a mathematical modeling study predicting the vaccine efficacy in vivo. Overall, these results indicate a strong immunostimulatory effect of TDM when delivered through the lipid nanocarrier, suggesting its potential as a novel TB vaccine.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Idoso de 80 Anos ou mais , Fatores Corda/farmacologia , Estudos Prospectivos , Tuberculose/tratamento farmacológico , Tuberculose/prevenção & controle , Citocinas
2.
Biomaterials ; 292: 121866, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36526351

RESUMO

The endothelial junction plays a central role in regulating intravascular and interstitial tissue permeability. The ability to manipulate its integrity therefore not only facilitates an improved understanding of its underlying molecular mechanisms but also provides insight into potential therapeutic solutions. Herein, we explore the effects of short-duration nanometer-amplitude MHz-order mechanostimulation on interendothelial junction stability and hence the barrier capacity of endothelial monolayers. Following an initial transient in which the endothelial barrier is permeabilised due to Rho-ROCK-activated actin stress fibre formation and junction disruption typical of a cell's response to insults, we observe, quite uniquely, the integrity of the endothelial barrier to not only spontaneously recover but also to be enhanced considerably-without the need for additional stimuli or intervention. Central to this peculiar biphasic response, which has not been observed with other stimuli to date, is the role of second messenger calcium and cyclic adenosine monophosphate (cAMP) signalling. We show that intracellular Ca2+, modulated by the high frequency excitation, is responsible for activating reorganisation of the actin cytoskeleton in the barrier recovery phase, in which circumferential actin bundles are formed to stabilise the adherens junctions via a cAMP-mediated Epac1-Rap1 pathway. Despite the short-duration stimulation (8 min), the approximate 4-fold enhancement in the transendothelial electrical resistance (TEER) of endothelial cells from different tissue sources, and the corresponding reduction in paracellular permeability, was found to persist over hours. The effect can further be extended through multiple treatments without resulting in hyperpermeabilisation of the barrier, as found with prolonged use of chemical stimuli, through which only 1.1- to 1.2-fold improvement in TEER has been reported. Such an ability to regulate and enhance endothelial barrier capacity is particularly useful in the development of in vitro barrier models that more closely resemble their in vivo counterparts.


Assuntos
Cálcio , Células Endoteliais , Células Endoteliais/metabolismo , Cálcio/metabolismo , Actinas/metabolismo , AMP Cíclico/metabolismo , Junções Aderentes/metabolismo
3.
Small ; 18(8): e2106823, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35023629

RESUMO

Stem cell fate can be directed through the application of various external physical stimuli, enabling a controlled approach to targeted differentiation. Studies involving the use of dynamic mechanical cues driven by vibrational excitation to date have, however, been limited to low frequency (Hz to kHz) forcing over extended durations (typically continuous treatment for >7 days). Contrary to previous assertions that there is little benefit in applying frequencies beyond 1 kHz, we show here that high frequency MHz-order mechanostimulation in the form of nanoscale amplitude surface reflected bulk waves are capable of triggering differentiation of human mesenchymal stem cells from various donor sources toward an osteoblast lineage, with early, short time stimuli inducing long-term osteogenic commitment. More specifically, rapid treatments (10 min daily over 5 days) of the high frequency (10 MHz) mechanostimulation are shown to trigger significant upregulation in early osteogenic markers (RUNX2, COL1A1) and sustained increase in late markers (osteocalcin, osteopontin) through a mechanistic pathway involving piezo channel activation and Rho-associated protein kinase signaling. Given the miniaturizability and low cost of the devices, the possibility for upscaling the platform toward practical bioreactors, to address a pressing need for more efficient stem cell differentiation technologies in the pursuit of translatable regenerative medicine strategies, is ensivaged.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Diferenciação Celular/fisiologia , Células Cultivadas , Humanos , Osteoblastos , Osteogênese/fisiologia , Medicina Regenerativa
4.
Ultrason Sonochem ; 73: 105493, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33609993

RESUMO

The generation of cavitation-free radicals through evanescent electric field and bulk-streaming was reported when micro-volumes of a liquid were subjected to 10 MHz surface acoustic waves (SAW) on a piezoelectric substrate [Rezk et al., J. Phys. Chem. Lett. 2020, 11, 4655-4661; Rezk et al., Adv. Sci. 2021, 8, 2001983]. In the current study, we have tested a similar hypothesis with PZT-based ultrasonic units (760 kHz and 2 MHz) with varying dissolved gas concentrations, by sonochemiluminescence measurement and iodide dosimetry, to correlate radical generation with dissolved gas concentrations. The dissolved gas concentration was adjusted by controlling the over-head gas pressure. Our study reveals that there is a strong correlation between sonochemical activity and dissolved gas concentration, with negligible sonochemical activity at near-vacuum conditions. We therefore conclude that radical generation is dominated by acoustic cavitation in conventional PZT-based ultrasonic reactors, regardless of the excitation frequency.

5.
Commun Biol ; 3(1): 553, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33020585

RESUMO

Exosomes are promising disease diagnostic markers and drug delivery vehicles, although their use in practice is limited by insufficient homogeneous quantities that can be produced. We reveal that exposing cells to high frequency acoustic irradiation stimulates their generation without detriment to cell viability by exploiting their innate membrane repair mechanism, wherein the enhanced recruitment of calcium ions from the extracellular milieu into the cells triggers an ESCRT pathway known to orchestrate exosomal production. Given the high post-irradiation cell viabilities (≈95%), we are able to recycle the cells through iterative irradiation and post-excitation incubation steps, which facilitate high throughput production of a homogeneous population of exosomes-a particular challenge for translating exosome therapy into clinical practice. In particular, we show that approximately eight- to ten-fold enrichment in the number of exosomes produced can be achieved with just 7 cycles over 280 mins, equivalent to a yield of around 1.7-2.1-fold/h.


Assuntos
Células A549/efeitos da radiação , Estimulação Acústica/métodos , Cálcio/metabolismo , Exossomos/metabolismo , Células A549/metabolismo , Cálcio/fisiologia , Linhagem Celular , Sobrevivência Celular , Humanos , Som
6.
Int J Pharm ; 580: 119196, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32145340

RESUMO

Conventional nebulisation has the disadvantages of low aerosol output rate and potential damage to macromolecules due to high shear (jet nebulisation) or cavitation (ultrasonic nebulisation). HYDRA (HYbriD Resonant Acoustics) technology has been shown to overcome these problems by using a hybrid combination of surface and bulk sound waves to generate the aerosol droplets. We report the first in vivo human lung deposition study on such droplets. Twelve healthy adult subjects inhaled saline aerosols radiolabelled with technetium-99 m complexed with diethylene triamine penta-acetic acid (99mTc-DTPA). The distribution of the aerosolised droplets in the lungs was imaged by single photon emission computed tomography combined with low dose computed tomography (SPECT/CT). The volume median diameter and geometric standard deviation of the droplets were 1.32 ± 0.027 µm and 2.06 ± 0.040, respectively. The mean delivery efficiency from the nebuliser into the body was 51.2%. About 89.1 ± 4.3% and 2.3 ± 1.4% of the inhaled radiolabelled dose deposited in the lungs and oropharynx, respectively. The deposition was symmetrical and diffusive between the two lungs, with a mean penetration index of 0.82. Thus, the prototype HYDRA nebuliser showed excellent in vivo aerosol deposition performance, demonstrating its potential to be further developed for clinical applications.


Assuntos
Pulmão/diagnóstico por imagem , Pulmão/metabolismo , Nebulizadores e Vaporizadores , Som , Pentetato de Tecnécio Tc 99m/metabolismo , Tecnologia Farmacêutica/métodos , Administração por Inalação , Adulto , Aerossóis/administração & dosagem , Aerossóis/metabolismo , Feminino , Humanos , Pulmão/efeitos dos fármacos , Masculino , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único/métodos , Pentetato de Tecnécio Tc 99m/administração & dosagem , Tecnologia Farmacêutica/instrumentação , Distribuição Tecidual/efeitos dos fármacos , Distribuição Tecidual/fisiologia , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Adulto Jovem
7.
Biofabrication ; 12(1): 015013, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31600744

RESUMO

The ability to spatially organise the microenvironment of tissue scaffolds unlocks the potential of many scaffold-based tissue engineering applications. An example application is to aid the regeneration process of peripheral nerve injuries. Herein, we present a promising approach for three-dimensional (3D) micropatterning of nerve cells in tissue scaffolds for peripheral nerve repair. In particular, we demonstrate the 3D micropatterning of PC12 cells in a gelatin-hydroxyphenylpropionic acid (Gtn-HPA) hydrogel using ultrasound standing waves (USWs). PC12 cells were first aligned in 3D along nodal planes by the USWs in Gtn-HPA hydrogel precursor solution. The precursor was then crosslinked using horseradish peroxidase (HRP) and diluted hydrogen peroxide (H2O2), thus immobilising the aligned cells within 90-120 s. This micropatterning process is cost effective and can be replicated easily without the need for complex and expensive specialised equipment. USW-aligned PC12 cells showed no adverse effect in terms of viability or ability to proliferate. To our best knowledge, this is the first report on the effect of USW alignment on neural cell differentiation. Differentiated and USW-aligned PC12 cells showed directional uniformity after 20 d, making this technique a promising alternative approach to guide the nerve regeneration process.


Assuntos
Hidrogéis/química , Neurônios/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Proliferação de Células , Hidrogéis/efeitos da radiação , Neurônios/química , Células PC12 , Ratos , Engenharia Tecidual/instrumentação , Ultrassom
8.
Lab Chip ; 16(15): 2820-8, 2016 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-27334420

RESUMO

Thread-based microfluidics offer a simple, easy to use, low-cost, disposable and biodegradable alternative to conventional microfluidic systems. While it has recently been shown that such thread networks facilitate manipulation of fluid samples including mixing, flow splitting and the formation of concentration gradients, the passive capillary transport of fluid through the thread does not allow for precise control due to the random orientation of cellulose fibres that make up the thread, nor does it permit dynamic manipulation of the flow. Here, we demonstrate the use of high frequency sound waves driven from a chip-scale device that drives rapid, precise and uniform convective transport through the thread network. In particular, we show that it is not only possible to generate a stable and continuous concentration gradient in a serial dilution and recombination network, but also one that can be dynamically tuned, which cannot be achieved solely with passive capillary transport. Additionally, we show a proof-of-concept in which such spatiotemporal gradient generation can be achieved with the entire thread network embedded in a three-dimensional hydrogel construct to more closely mimic the in vivo tissue microenvironment in microfluidic chemotaxis studies and cell culture systems, which is then employed to demonstrate the effect of such gradients on the proliferation of cells within the hydrogel.


Assuntos
Técnicas de Cultura de Células/instrumentação , Dispositivos Lab-On-A-Chip , Microfluídica/métodos , Modelos Químicos , Neoplasias/patologia , Som , Microambiente Tumoral/efeitos da radiação , Algoritmos , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Células Imobilizadas , Celulose/química , Quimiotaxia/efeitos da radiação , Desenho de Equipamento , Fibrossarcoma/patologia , Humanos , Hidrogéis/química , Cinética , Microfluídica/instrumentação , Estudo de Prova de Conceito
9.
Integr Biol (Camb) ; 8(1): 12-20, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26611725

RESUMO

Despite the promise of stem cell therapy for lung therapeutics and repair, there are few viable means for directly delivering stem cells to locally target the respiratory airways via inhalation. This is not surprising given the significant challenges in aerosolising stem cells, particularly given their susceptibility to damage under the large stresses involved in the nebulisation process. Here, we present promising results using a microfluidic acoustic nebulisation platform that is not only low cost and portable, but also its high MHz order frequencies are effective for preserving the structural and functional integrity of mesenchymal stem cells (MSCs) during the nebulisation process. This is verified through an assessment of the viability, structure, metabolic activity, proliferation ability and genetic makeup of the nebulised MSCs using a variety of assays, including cell viability staining, flow cytometry, reverse transcription and quantitative polymerase chain reaction, and immunophenotyping, thus demonstrating the platform as a promising method for efficient pulmonary stem cell delivery.


Assuntos
Acústica/instrumentação , Aerossóis/administração & dosagem , Transplante de Células-Tronco Mesenquimais/instrumentação , Células-Tronco Mesenquimais/citologia , Sistemas Microeletromecânicos/instrumentação , Nebulizadores e Vaporizadores , Administração por Inalação , Animais , Técnicas de Cultura de Células/instrumentação , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Desenho de Equipamento , Análise de Falha de Equipamento , Dispositivos Lab-On-A-Chip , Células-Tronco Mesenquimais/fisiologia , Ratos , Ratos Sprague-Dawley
10.
ACS Biomater Sci Eng ; 2(6): 1013-1022, 2016 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-33429510

RESUMO

Intense acoustically driven microcentrifugation flows are employed to enhance the assembly of cellular spheroids in the microwell of a tissue culture well plate. This ability to interface microfluidics with commonly used tissue culture plasticware is a significant advantage as it can potentially be parallelized for high throughput operation and allows existing analytical equipment designed to fit current laboratory formats to be retained. The microcentrifugation flow, induced in the microwell coated with a low adhesive hydrogel, is shown to rapidly enhance the concentration of cells into tight aggregates within a minute-considerably faster than the conventional hanging drop and liquid overlay methods, which typically require days-while maintaining their viability. The proposed method also affords better control of the compaction force and hence the spheroid dimension simply by tuning the input power, which is a significant improvement over other microfluidic methods that require the fabrication of different geometries and microstructures to generate spheroids of different sizes. The spheroids produced are observed to exhibit the concentric heterogeneous cell populations and tight cell-cell interfaces typical of in vivo tumors, and are potentially useful in a broad spectrum of cancer biology and drug screening studies.

11.
Biomicrofluidics ; 9(5): 052603, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25945147

RESUMO

Nebulizers have considerable advantages over conventional inhalers for pulmonary drug administration, particularly because they do not require coordinated breath actuation to generate and deliver the aerosols. Nevertheless, besides being less amenable to miniaturization and hence portability, some nebulizers are prone to denature macromolecular drugs due to the large forces generated during aerosolization. Here, we demonstrate a novel portable acoustomicrofluidic device capable of nebulizing epidermal growth factor receptor (EGFR) monoclonal antibodies into a fine aerosol mist with a mass median aerodynamic diameter of approximately 1.1 µm, optimal for deep lung deposition via inhalation. The nebulized monoclonal antibodies were tested for their stability, immunoactivity, and pharmacological properties, which confirmed that nebulization did not cause significant degradation of the antibody. In particular, flow cytometry demonstrated that the antigen binding capability of the antibody is retained and able to reduce phosphorylation in cells overexpressing the EGFR, indicating that the aerosols generated by the device were loaded with stable and active monoclonal antibodies. The delivery of antibodies via inhalation, particularly for the treatment of lung cancer, is thus expected to enhance the efficacy of this protein therapeutic by increasing the local concentration where they are needed.

12.
Respir Res ; 15: 60, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24884387

RESUMO

BACKGROUND: Pulmonary-delivered gene therapy promises to mitigate vaccine safety issues and reduce the need for needles and skilled personnel to use them. While plasmid DNA (pDNA) offers a rapid route to vaccine production without side effects or reliance on cold chain storage, its delivery to the lung has proved challenging. Conventional methods, including jet and ultrasonic nebulizers, fail to deliver large biomolecules like pDNA intact due to the shear and cavitational stresses present during nebulization. METHODS: In vitro structural analysis followed by in vivo protein expression studies served in assessing the integrity of the pDNA subjected to surface acoustic wave (SAW) nebulisation. In vivo immunization trials were then carried out in rats using SAW nebulized pDNA (influenza A, human hemagglutinin H1N1) condensate delivered via intratracheal instillation. Finally, in vivo pulmonary vaccinations using pDNA for influenza was nebulized and delivered via a respirator to sheep. RESULTS: The SAW nebulizer was effective at generating pDNA aerosols with sizes optimal for deep lung delivery. Successful gene expression was observed in mouse lung epithelial cells, when SAW-nebulized pDNA was delivered to male Swiss mice via intratracheal instillation. Effective systemic and mucosal antibody responses were found in rats via post-nebulized, condensed fluid instillation. Significantly, we demonstrated the suitability of the SAW nebulizer to administer unprotected pDNA encoding an influenza A virus surface glycoprotein to respirated sheep via aerosolized inhalation. CONCLUSION: Given the difficulty of inducing functional antibody responses for DNA vaccination in large animals, we report here the first instance of successful aerosolized inhalation delivery of a pDNA vaccine in a large animal model relevant to human lung development, structure, physiology, and disease, using a novel, low-power (<1 W) surface acoustic wave (SAW) hand-held nebulizer to produce droplets of pDNA with a size range suitable for delivery to the lower respiratory airways.


Assuntos
Técnicas de Transferência de Genes , Pulmão/fisiologia , Som , Vacinação/métodos , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Administração por Inalação , Aerossóis , Animais , Feminino , Humanos , Masculino , Camundongos , Nebulizadores e Vaporizadores , Ratos , Ratos Sprague-Dawley , Ovinos , Propriedades de Superfície , Resultado do Tratamento
13.
Adv Healthc Mater ; 3(10): 1655-70, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24711346

RESUMO

Compared with preformed anisotropic matrices, an anisotropic matrix that allows users to alter its properties and structure in situ after synthesis offers the important advantage of being able to mimic dynamic in vivo microenvironments, such as in tissues undergoing morphogenesis or in wounds undergoing tissue repair. In this study, porous gradients are generated in situ in a hydrogel comprising enzymatically crosslinked gelatin hydroxyphenylpropionic acid (GTN-HPA) conjugate and carboxylmethyl cellulose tyramine (CMC-TYR) conjugate. The GTN-HPA component acts as the backbone of the hydrogel, while CMC-TYR acts as a biocompatible sacrificial polymer. The hydrogel is then used to immobilize HT1080 human fibrosarcoma cells in a microfluidic chamber. After diffusion of a biocompatible cellulase enzyme through the hydrogel in a spatially controlled manner, selective digestion of the CMC component of the hydrogel by the cellulase gives rise to a porosity gradient in situ instead of requiring its formation during hydrogel synthesis as with other methods. The influence of this in situ tunable porosity gradient on the chemotactic response of cancer cells is subsequently studied both in the absence and presence of chemoattractant. This platform illustrates the potential of hydrogel-based microfluidics to mimic the 3D in vivo microenvironment for tissue engineering and diagnostic applications.


Assuntos
Técnicas de Cultura de Células/instrumentação , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Técnicas Analíticas Microfluídicas/instrumentação , Alicerces Teciduais/química , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Movimento Celular , Sobrevivência Celular , Gelatina/química , Humanos , Técnicas Analíticas Microfluídicas/métodos , Porosidade , Propionatos/química
14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(5 Pt 2): 056312, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23214881

RESUMO

Generating aerosol droplets via the atomization of thin aqueous films with high frequency surface acoustic waves (SAWs) offers several advantages over existing nebulization methods, particularly for pulmonary drug delivery, offering droplet sizes in the 1-5-µm range ideal for effective pulmonary therapy. Nevertheless, the physics underlying SAW atomization is not well understood, especially in the context of thin liquid film formation and spreading and how this affects the aerosol production. Here, we demonstrate that the film geometry, governed primarily by the applied power and frequency of the SAW, indeed plays a crucial role in the atomization process and, in particular, the size of the atomized droplets. In contrast to the continuous spreading of low surface energy liquids atop similar platforms, high surface energy liquids such as water, in the present case, are found to undergo transient spreading due to the SAW to form a quasisteady film whose height is determined by self-selection of the energy minimum state associated with the acoustic resonance in the film and whose length arises from a competition between acoustic streaming and capillary effects. This is elucidated from a fundamental model for the thin film spreading behavior under SAW excitation, from which we show good agreement between the experimentally measured and theoretically predicted droplet dimension, both of which consistently indicate a linear relationship between the droplet diameter and the mechanical power coupled into the liquid by the SAW (the latter captured by an acoustic Weber number to the two thirds power, and the reciprocal of the SAW frequency).


Assuntos
Aerossóis/química , Gases/química , Membranas Artificiais , Modelos Químicos , Reologia/métodos , Som , Água/química , Simulação por Computador , Vibração
15.
Phys Rev Lett ; 101(8): 084502, 2008 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-18764621

RESUMO

Spatiotemporal patterns form in many nonlinear physicochemical or biological systems. Although unusual, microfluidic systems are no exception. We observe such patterns to form by colloids along the free surface of a drop beneath which surface acoustic waves propagate, and propose fundamental mechanisms to elucidate their formation. With increasing excitation amplitude, the colloids first assemble into concentric rings and then cluster into islands due to a combination of capillarity and surface acceleration. As the excitation is further increased, fluid streaming commences within the drop, inducing a transient metastable state in which the system alternates between colloidal island formation on the quiescent drop surface and subsequent erasure due to local vortex generation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA