Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Theranostics ; 13(14): 5075-5098, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771778

RESUMO

Background: Exploiting synthetic lethality (SL) relationships between protein pairs has emerged as an important avenue for the development of anti-cancer drugs. Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme of the NAD+ salvage pathway, having an SL relationship with nicotinic acid phosphoribosyltransferase (NAPRT), the key enzyme in the NAD+ Preiss-Handler pathway. NAMPT inhibitor holds clinical potential not only as a promising cancer treatment but also as a means of protection against chemotherapy-induced-peripheral-neuropathy (CIPN). However, as NAD+ is essential for normal cells, the clinical use of NAMPT inhibitors is challenging. This study aimed to identify a novel NAMPT inhibitor with enhanced selective cytotoxicity against NAPRT-deficient cancer cells as well as prominent efficacy in alleviating CIPN. Methods: We began by conducting drug derivatives screening in a panel of lung cancer cell lines to select an agent with the broadest therapeutic window between the NAPRT-negative and-positive cancer cell lines. Both in vitro and In vivo comparative analyses were conducted between A4276 and other NAMPT inhibitors to evaluate the NAPRT-negative cancer cell selectivity and the underlying distinct NAMPT inhibition mechanism of A4276. Patient-derived tumor transcriptomic data and protein levels in various cancer cell lines were analyzed to confirm the correlation between NAPRT depletion and epithelial-to-mesenchymal transition (EMT)-like features in various cancer types. Finally, the efficacy of A4276 for axonal protection and CIPN remedy was examined in vitro and in vivo. Results: The biomarker-driven phenotypic screening led to a discovery of A4276 with prominent selectivity against NAPRT-negative cancer cells compared with NAPRT-positive cancer cells and normal cells. The cytotoxic effect of A4276 on NAPRT-negative cells is achieved through its direct binding to NAMPT, inhibiting its enzymatic function at an optimal and balanced level allowing NAPRT-positive cells to survive through NAPRT-dependent NAD+ synthesis. NAPRT deficiency serves as a biomarker for the response to A4276 as well as an indicator of EMT-subtype cancer in various tumor types. Notably, A4276 protects axons from Wallerian degeneration more effectively than other NAMPT inhibitors by decreasing NMN-to-NAD+ ratio. Conclusion: This study demonstrates that A4276 selectively targets NAPRT-deficient EMT-subtype cancer cells and prevents chemotherapy-induced peripheral neuropathy, highlighting its potential as a promising anti-cancer agent for use in cancer monotherapy or combination therapy with conventional chemotherapeutics.

2.
Sci Data ; 10(1): 241, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37105983

RESUMO

Domestic dogs (Canis lupus familiaris) are popular companion animals. Increase in medical expenses associated with them and demand for extending their lifespan in a healthy manner has created the need to develop new diagnostic technology. Companion dogs also serve as important animal models for non-clinical research as they can provide various biological phenotypes. Proteomics have been increasingly used on dogs and humans to identify novel biomarkers of various diseases. Despite the growing applications of proteomics in liquid biopsy in veterinary medicine, no publicly available spectral assay libraries have been created for the proteome of canine serum and urine. In this study, we generated spectral assay libraries for the two-representative liquid-biopsy samples using mid-pH fractionation that allows in-depth understanding of proteome coverage. The resultant canine serum and urine spectral assay libraries include 1,132 and 4,749 protein groups and 5,483 and 25,228 peptides, respectively. We built these complimentary accessible resources for proteomic biomarker discovery studies through ProteomeXchange with the identifier PXD034770.


Assuntos
Proteoma , Animais , Cães , Biomarcadores/sangue , Biomarcadores/urina , Doenças do Cão , Peptídeos , Proteoma/metabolismo , Proteômica
3.
J Cell Mol Med ; 26(7): 2104-2118, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35178859

RESUMO

Damage to normal tissue can occur over a long period after cancer radiotherapy. Free radical by radiation can initiate or accelerate chronic inflammation, which can lead to atherosclerosis. However, the underlying mechanisms remain unclear. Vascular smooth muscle cells (VSMCs) proliferate in response to JAK/STAT3 signalling. C-reactive protein (CRP) can induce VSMCs apoptosis via triggering NADPH oxidase (NOX). Apoptotic VSMCs promote instability and inflammation of atherosclerotic lesions. Herein, we identified a VSMCs that switched from proliferation to apoptosis through was enhanced by radiation-induced CRP. NOX inhibition using lentiviral sh-p22phox prevented apoptosis upon radiation-induced CRP. CRP overexpression reduced the amount of STAT3/Ref-1 complex, decreased JAK/STAT phosphorylation and formed a new complex of Ref-1/CRP in VSMC. Apoptosis of VSMCs was further increased by CRP co-overexpressed with Ref-1. Functional inhibition of NOX or p53 also prevented apoptotic activity of the CRP-Ref-1 complex. Immunofluorescence showed co-localization of CRP, Ref-1 and p53 with α-actin-positive VSMC in human atherosclerotic plaques. In conclusion, radiation-induced CRP increased the VSMCs apoptosis through Ref-1, which dissociated the STAT3/Ref-1 complex, interfered with JAK/STAT3 activity, and interacted with CRP-Ref-1, thus resulting in transcription-independent cell death via p53. Targeting CRP as a vascular side effect of radiotherapy could be exploited to improve curability.


Assuntos
Proteína C-Reativa , Músculo Liso Vascular , Apoptose , Proteína C-Reativa/genética , Proteína C-Reativa/metabolismo , Células Cultivadas , Humanos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/metabolismo
4.
World J Mens Health ; 40(4): 608-617, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35021302

RESUMO

PURPOSE: To establish the standard of procedure in preparing benign and cancerous prostate tissues and evaluate the quality of proteomics and phosphoproteomics during transurethral resection of the prostate (TUR-P) with different surgical conditions. MATERIALS AND METHODS: TUR-P tissue samples from three patients, two diagnosed with prostate cancer and one with benign prostatic hyperplasia, were each analyzed under three different conditions, based on differences in energy values, tissue locations, and surgical techniques. Global- and phosphorylated proteomic profiles of prostate tissues were analyzed by liquid chromatography-tandem mass spectrometry. RESULTS: A total of 6,019 global proteins and 4,280 phosphorylated peptides were identified in the nine tissues. The quantitative distributions of proteins and phosphorylation in tissues from the same patient were not affected by changes in the surgical conditions, but indirect relative comparisons differed among patients. Phosphorylation levels, especially of proteins involved in the androgen receptor pathway, important in prostate cancer, were preserved in each patient. CONCLUSIONS: Proteomic profiles of prostate tissue collected by TUR-P were not significantly affected by energy levels, tissue location, or surgical technique. In addition, since protein denaturation of samples through TUR-P is rarely confirmed in this study, we think that it will be an important guide for tissue samples in castration resistant prostate cancer patients, where it is difficult to obtain tissue. This result is the first report about proteomic and phosphoproteomic results with TUR-P samples in prostate cancer and will be theoretical basis in protein analysis research with prostate cancer tissues.

5.
Cancers (Basel) ; 13(24)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34944885

RESUMO

The plasma proteome of 51 non-metastatic breast cancer patients receiving neoadjuvant chemotherapy (NCT) was prospectively analyzed by high-resolution mass spectrometry coupled with nano-flow liquid chromatography using blood drawn at the time of diagnosis. Plasma proteins were identified as potential biomarkers, and their correlation with clinicopathological variables and survival outcomes was analyzed. Of 51 patients, 20 (39.2%) were HR+/HER2-, five (9.8%) were HR+/HER2+, five (9.8%) were HER2+, and 21 (41.2%) were triple-negative subtype. During a median follow-up of 52.0 months, there were 15 relapses (29.4%) and eight deaths (15.7%). Four potential biomarkers were identified among differentially expressed proteins: APOC3 had higher plasma concentrations in the pathological complete response (pCR) group, whereas MBL2, ENG, and P4HB were higher in the non-pCR group. Proteins statistically significantly associated with survival and capable of differentiating low- and high-risk groups were MBL2 and P4HB for disease-free survival, P4HB for overall survival, and MBL2 for distant metastasis-free survival (DMFS). In the multivariate analysis, only MBL2 was a consistent risk factor for DMFS (HR: 9.65, 95% CI 2.10-44.31). The results demonstrate that the proteomes from non-invasive sampling correlate with pCR and survival in breast cancer patients receiving NCT. Further investigation may clarify the role of these proteins in predicting prognosis and thus their therapeutic potential for the prevention of recurrence.

7.
Cancers (Basel) ; 13(10)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064977

RESUMO

Ovarian cancer (OC) is the most lethal gynecologic malignancy and in-time diagnosis is limited because of the absence of effective biomarkers. Germline BRCA1/2 genetic alterations are risk factors for hereditary OC; risk-reducing salpingo-oophorectomy (RRSO) is pursued for disease prevention. However, not all healthy carriers develop the disease. Therefore, identifying predictive markers in the BRCA1/2 carrier population could help improve the identification of candidates for preventive RRSO. In this study, plasma samples from 20 OC patients (10 patients with BRCA1/2 wild type (wt) and 10 with the BRCA1/2 variant (var)) and 20 normal subjects (10 subjects with BRCA1/2wt and 10 with BRCA1/2var) were analyzed for potential biomarkers of hereditary OC. We applied a bottom-up proteomics approach, using nano-flow LC-MS to analyze depleted plasma proteome quantitatively, and potential plasma protein markers specific to the BRCA1/2 variant were identified from a comparative statistical analysis of the four groups. We obtained 1505 protein candidates from the 40 subjects, and SPARC and THBS1 were verified by enzyme-linked immunosorbent assay. Plasma SPARC and THBS1 concentrations in healthy BRCA1/2 carriers were found to be lower than in OC patients with BRCA1/2var. If plasma SPARC concentrations increase over 337.35 ng/mL or plasma THBS1 concentrations increase over 65.28 µg/mL in a healthy BRCA1/2 carrier, oophorectomy may be suggested.

8.
Cancers (Basel) ; 12(11)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33228226

RESUMO

The 5-year survival rate in the early and late stages of ovarian cancer differs by 63%. In addition, a liquid biopsy is necessary because there are no symptoms in the early stage and tissue collection is difficult without using invasive methods. Therefore, there is a need for biomarkers to achieve this goal. In this study, we found blood-based metabolite or protein biomarker candidates for the diagnosis of ovarian cancer in the 20 clinical samples (10 ovarian cancer patients and 10 healthy control subjects). Plasma metabolites and proteins were measured and quantified using mass spectrometry in ovarian cancer patients and control groups. We identified the differential abundant biomolecules (34 metabolites and 197 proteins) and statistically integrated molecules of different dimensions to better understand ovarian cancer signal transduction and to identify novel biological mechanisms. In addition, the biomarker reliability was verified through comparison with existing research results. Integrated analysis of metabolome and proteome identified emerging properties difficult to grasp with the single omics approach, more reliably interpreted the cancer signaling pathway, and explored new drug targets. Especially, through this analysis, proteins (PPCS, PMP2, and TUBB) and metabolites (L-carnitine and PC-O (30:0)) related to the carnitine system involved in cancer plasticity were identified.

9.
Biology (Basel) ; 9(10)2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053617

RESUMO

Endoplasmic reticulum (ER) stress and its adaptive cellular response, the unfolded protein response (UPR), are involved in various diseases including neurodegenerative diseases, metabolic diseases, and even cancers. Here, we analyzed the novel function of ubiquitin-specific peptidase 14 (USP14) in ER stress. The overexpression of Drosophila USP14 protected the cells from ER stress without affecting the proteasomal activity. Null Hong Kong (NHK) and alpha-1-antitrypsin Z (ATZ) are ER-associated degradation substrates. The degradation of NHK, but not of ATZ, was delayed by USP14. USP14 restored the levels of rhodopsin-1 protein in a Drosophila model for autosomal dominant retinitis pigmentosa and suppressed the retinal degeneration in this model. In addition, we observed that proteasome complex is dynamically reorganized in response to ER stress in human 293T cells. These findings suggest that USP14 may be a therapeutic strategy in diseases associated with ER stress.

10.
Nat Commun ; 11(1): 3288, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620753

RESUMO

The prognostic and therapeutic relevance of molecular subtypes for the most aggressive isocitrate dehydrogenase 1/2 (IDH) wild-type glioblastoma (GBM) is currently limited due to high molecular heterogeneity of the tumors that impedes patient stratification. Here, we describe a distinct binary classification of IDH wild-type GBM tumors derived from a quantitative proteomic analysis of 39 IDH wild-type GBMs as well as IDH mutant and low-grade glioma controls. Specifically, GBM proteomic cluster 1 (GPC1) tumors exhibit Warburg-like features, neural stem-cell markers, immune checkpoint ligands, and a poor prognostic biomarker, FKBP prolyl isomerase 9 (FKBP9). Meanwhile, GPC2 tumors show elevated oxidative phosphorylation-related proteins, differentiated oligodendrocyte and astrocyte markers, and a favorable prognostic biomarker, phosphoglycerate dehydrogenase (PHGDH). Integrating these proteomic features with the pharmacological profiles of matched patient-derived cells (PDCs) reveals that the mTORC1/2 dual inhibitor AZD2014 is cytotoxic to the poor prognostic PDCs. Our analyses will guide GBM prognosis and precision treatment strategies.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Isocitrato Desidrogenase/genética , Proteogenômica/métodos , Proteômica/métodos , Benzamidas/farmacologia , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Glioblastoma/genética , Glioblastoma/terapia , Humanos , Isocitrato Desidrogenase/classificação , Isocitrato Desidrogenase/metabolismo , Estimativa de Kaplan-Meier , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Morfolinas/farmacologia , Mutação , Prognóstico , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia
11.
BMB Rep ; 53(11): 576-581, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32684241

RESUMO

Dimethylation of the histone H3 protein at lysine residue 9 (H3K9) is mediated by euchromatin histone methyltransferase II (EHMT2) and results in transcriptional repression of target genes. Recently, chemical inhibition of EHMT2 was shown to induce various physiological outcomes, including endoplasmic reticulum stress-associated genes transcription in cancer cells. To identify genes that are transcriptionally repressed by EHMT2 during apoptosis, and cell stress responses, we screened genes that are upregulated by BIX-01294, a chemical inhibitor of EHMT2. RNA sequencing analyses revealed 77 genes that were upregulated by BIX-01294 in all four hepatic cell carcinoma (HCC) cell lines. These included genes that have been implicated in apoptosis, the unfolded protein response (UPR), and others. Among these genes, the one encoding the stress-response protein Ras-related GTPase C (RRAGC) was upregulated in all BIX-01294-treated HCC cell lines. We confirmed the regulatory roles of EHMT2 in RRAGC expression in HCC cell lines using proteomic analyses, chromatin immune precipitation (ChIP) assay, and small guide RNA-mediated loss-of-function experiments. Upregulation of RRAGC was limited by the reactive oxygen species (ROS) scavenger N-acetyl cysteine (NAC), suggesting that ROS are involved in EHMT2-mediated transcriptional regulation of stress-response genes in HCC cells. Finally, combined treatment of cells with BIX-01294 and 5- Aza-cytidine induced greater upregulation of RRAGC protein expression. These findings suggest that EHMT2 suppresses expression of the RRAGC gene in a ROS-dependent manner and imply that EHMT2 is a key regulator of stress-responsive gene expression in liver cancer cells. [BMB Reports 2020; 53(11): 576-581].


Assuntos
Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Apoptose/genética , Azepinas/farmacologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Imunoprecipitação da Cromatina/métodos , Eucromatina/genética , Expressão Gênica/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Antígenos de Histocompatibilidade/fisiologia , Histona Metiltransferases/genética , Histona Metiltransferases/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/fisiologia , Histonas/genética , Histonas/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas Monoméricas de Ligação ao GTP/fisiologia , Proteômica , Quinazolinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/genética , Transcriptoma/genética
12.
Life Sci Alliance ; 3(3)2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32075852

RESUMO

Hypoxia selectively enhances mRNA translation despite suppressed mammalian target of rapamycin complex 1 activity, contributing to gene expression reprogramming that promotes metastasis and survival of cancer cells. Little is known about how this paradoxical control of translation occurs. Here, we report a new pathway that links hypoxia to selective mRNA translation. Transglutaminase 2 (TG2) is a hypoxia-inducible factor 1-inducible enzyme that alters the activity of substrate proteins by polyamination or crosslinking. Under hypoxic conditions, TG2 polyaminated eukaryotic translation initiation factor 4E (eIF4E)-bound eukaryotic translation initiation factor 4E-binding proteins (4EBPs) at conserved glutamine residues. 4EBP1 polyamination enhances binding affinity for Raptor, thereby increasing phosphorylation of 4EBP1 and cap-dependent translation. Proteomic analyses of newly synthesized proteins in hypoxic cells revealed that TG2 activity preferentially enhanced the translation of a subset of mRNA containing G/C-rich 5'UTRs but not upstream ORF or terminal oligopyrimidine motifs. These results indicate that TG2 is a critical regulator in hypoxia-induced selective mRNA translation and provide a promising molecular target for the treatment of cancers.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Hipóxia Celular/fisiologia , Proteínas de Ligação ao GTP/metabolismo , Transglutaminases/metabolismo , Células A549 , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Fator de Iniciação Eucariótico 4G/genética , Proteínas de Ligação ao GTP/genética , Humanos , Fator 1 Induzível por Hipóxia/metabolismo , Fosfoproteínas/genética , Fosforilação , Biossíntese de Proteínas , Proteína 2 Glutamina gama-Glutamiltransferase , Proteômica , Capuzes de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transglutaminases/genética
13.
Radiat Res ; 191(3): 262-270, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30702968

RESUMO

In the event of a mass casualty radiation scenario, biodosimetry has the potential to quantify individual exposures for triaging and providing dose-appropriate medical intervention. Structural maintenance of chromosomes 1 (SMC1) is phosphorylated in response to ionizing radiation. The goal of this study was to develop a new biodosimetry method using SMC1 phosphorylation as a measure of exposure to radiation. In the initial experiments, two normal human cell lines (WI-38VA-13 and HaCaT) and four lymphoblastoid cell lines were irradiated, and the levels of SMC1 phosphorylation at Ser-360 and Ser-957 were assessed using Western blotting. Subsequently, similar experiments were performed using peripheral blood mononuclear cells (PBMCs) obtained from 20 healthy adults. Phosphorylation of SMC1 at Ser-957 and Ser-360 was increased by exposure in a dose-dependent manner, peaked at 1-3 h postirradiation and then decreased gradually. Ser-360 was identified as a new phosphorylation site and was more sensitive to radiation than Ser-957, especially at doses below 1 Gy. Our results demonstrate a robust ex vivo response of phospho-SMC1-(Ser-360) to ionizing radiation in human PBMCs. Detection of phosphorylation at Ser-360 in SMC1 could be used as a marker of radiation exposure. Our findings suggest that it is feasible to measure blood cell-based changes in the phosphorylation level of a protein as an ex vivo radiation exposure detection method, even after low-dose exposure.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/efeitos da radiação , Serina/metabolismo , Linhagem Celular , Cromatina/metabolismo , Relação Dose-Resposta à Radiação , Humanos , Fosforilação/efeitos da radiação , Fatores de Tempo
14.
Proteomics ; 18(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29136334

RESUMO

Glioblastoma, also known as glioblastoma multiforme (GBM), is the most malignant type of brain cancer and has poor prognosis with a median survival of less than one year. While the structural changes of tumor cell surface carbohydrates are known to be associated with invasive behavior of tumor cells, the cell surface glycoproteins to differentiate the low- and high-grade glioma cells can be potential diagnostic markers and therapeutic targets for GBMs. In the present study, lectin arrays consisting of eight lectins were employed to explore cell surface carbohydrate expression patterns on low-grade oligodendroglioma cells (Hs683) and GBM cells (T98G). Griffonia simplicifolia I (GS I) was found to selectively bind to T98G cells and not to Hs683 cells. For identification of the glioblastoma-specific cell surface markers, the glycoproteins from each cell type were captured by a GS I lectin column and analyzed by LC-MS/MS. The identified proteins from the two cell types were quantified using label-free quantitative analysis based on spectral counting. Of cell surface glycoproteins showing significant increases in T98G cells, five proteins were selected for verification of both protein and glycosylation level changes using Western blot and GS I lectin-based immunosorbent assay.


Assuntos
Biomarcadores Tumorais/metabolismo , Membrana Celular/metabolismo , Cromatografia Líquida/métodos , Glioblastoma/metabolismo , Lectinas/metabolismo , Glicoproteínas de Membrana/metabolismo , Espectrometria de Massas em Tandem/métodos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Glicosilação , Humanos , Células Tumorais Cultivadas
15.
Sci Rep ; 7(1): 6599, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28747677

RESUMO

Various forms of protein (proteoforms) are generated by genetic variations, alternative splicing, alternative translation initiation, co- or post-translational modification and proteolysis. Different proteoforms are in part discovered by characterizing their N-terminal sequences. Here, we introduce an N-terminal-peptide-enrichment method, Nrich. Filter-aided negative selection formed the basis for the use of two N-blocking reagents and two endoproteases in this method. We identified 6,525 acetylated (or partially acetylated) and 6,570 free protein N-termini arising from 5,727 proteins in HEK293T human cells. The protein N-termini included translation initiation sites annotated in the UniProtKB database, putative alternative translational initiation sites, and N-terminal sites exposed after signal/transit/pro-peptide removal or unknown processing, revealing various proteoforms in cells. In addition, 46 novel protein N-termini were identified in 5' untranslated region (UTR) sequence with pseudo start codons. Our data showing the observation of N-terminal sequences of mature proteins constitutes a useful resource that may provide information for a better understanding of various proteoforms in cells.


Assuntos
Células Epiteliais/química , Isoformas de Proteínas/análise , Células HEK293 , Humanos , Isoformas de Proteínas/isolamento & purificação
16.
Sci Rep ; 6: 35305, 2016 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-27734975

RESUMO

Variations in protein coding sequence may sometimes play important roles in cancer development. However, since variants may not express into proteins due to various cellular quality control systems, it is important to get protein-level evidence of the genomic variations. We present a proteogenomic strategy getting protein-level evidence of genomic variants, which we call sequential targeted LC-MS/MS based on prediction of peptide pI and Retention time (STaLPIR). Our approach shows improved peptide identification, and has the potential for the unbiased analysis of variant sequence as well as corresponding reference sequence. Integrated analysis of DNA, mRNA and protein suggests that protein expression level of the nonsynonymous variant is regulated either before or after translation, according to influence of the variant on protein function. In conclusion, our data provides an excellent approach getting direct evidence for the expression of variant protein forms from genome sequence data.


Assuntos
Proteogenômica/métodos , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Linhagem Celular Tumoral , Cromatografia Líquida , Biologia Computacional/métodos , Bases de Dados de Proteínas , Exoma , Variação Genética , Humanos , Mutação , Peptídeos/química , Proteínas/genética , Proteoma , Análise de Sequência de RNA , Espectrometria de Massas em Tandem , Transcriptoma
17.
Anal Biochem ; 477: 41-9, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25766576

RESUMO

In the present study, the fractionation scheme for cysteinyl peptide enrichment (CPE) was combined with the mass differential tags for relative and absolute quantification (mTRAQ) method to reduce sample complexity and increase proteome coverage. Cysteine residues of the proteins were first alkylated using iodoacetyl PEG2-biotin instead of other conventional alkylating agents such as iodoacetamide. After trypsin digestion, amine groups were labeled with mTRAQ, and these labeled peptides were fractionated according to the presence or absence of cysteine residues using avidin-biotin affinity chromatography. With these approaches, we were able to divide the peptides into the two fractions with more than 90% fractionation efficiency for standard protein and MCF7 cell lysate. When the fractionation strategy was applied to colorectal cancer tissue samples, we were able to obtain quantitative information that was consistent with the previous study based on mTRAQ quantification, implying that the cysteine-based fractionation method does not affect mTRAQ quantification. We expect that the mTRAQ-based quantitative analysis combined with peptide fractionation through the CPE strategy would allow for deep-down analysis of proteome samples and ultimately for increasing proteome coverage with simultaneous quantification for biomarker discovery.


Assuntos
Cisteína , Marcação por Isótopo/métodos , Espectrometria de Massas/métodos , Peptídeos/química , Proteômica/métodos , Humanos , Células MCF-7 , Peptídeos/metabolismo , Proteólise , Tripsina/metabolismo
18.
Nat Commun ; 5: 2958, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24389582

RESUMO

The redox-dependent inhibition of thioredoxin (TRX) by thioredoxin-interacting protein (TXNIP) plays a pivotal role in various cancers and metabolic syndromes. However, the molecular mechanism of this regulation is largely unknown. Here, we present the crystal structure of the TRX-TXNIP complex and demonstrate that the inhibition of TRX by TXNIP is mediated by an intermolecular disulphide interaction resulting from a novel disulphide bond-switching mechanism. Upon binding to TRX, TXNIP undergoes a structural rearrangement that involves switching of a head-to-tail interprotomer Cys63-Cys247 disulphide between TXNIP molecules to an interdomain Cys63-Cys190 disulphide, and the formation of a de novo intermolecular TXNIP Cys247-TRX Cys32 disulphide. This disulphide-switching event unexpectedly results in a domain arrangement of TXNIP that is entirely different from those of other arrestin family proteins. We further show that the intermolecular disulphide bond between TRX and TXNIP dissociates in the presence of high concentrations of reactive oxygen species. This study provides insight into TRX and TXNIP-dependent cellular regulation.


Assuntos
Proteínas de Transporte/metabolismo , Dissulfetos/metabolismo , Oxirredução , Espécies Reativas de Oxigênio , Tiorredoxinas/metabolismo , Cristalografia por Raios X , Humanos , Modelos Moleculares , Estrutura Terciária de Proteína
19.
Mol Cell ; 51(3): 374-85, 2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-23871434

RESUMO

WIP1 (wild-type p53-induced phosphatase 1) functions as a homeostatic regulator of the ataxia telangiectasia mutated (ATM)-mediated signaling pathway in response to ionizing radiation (IR). Here we identify homeodomain-interacting protein kinase 2 (HIPK2) as a protein kinase that targets WIP1 for phosphorylation and proteasomal degradation. In unstressed cells, WIP1 is constitutively phosphorylated by HIPK2 and maintained at a low level by proteasomal degradation. In response to IR, ATM-dependent AMPKα2-mediated HIPK2 phosphorylation promotes inhibition of WIP1 phosphorylation through dissociation of WIP1 from HIPK2, followed by stabilization of WIP1 for termination of the ATM-mediated double-strand break (DSB) signaling cascade. Notably, HIPK2 depletion impairs IR-induced γ-H2AX foci formation, cell-cycle checkpoint activation, and DNA repair signaling, and the survival rate of hipk2+/- mice upon γ-irradiation is markedly reduced compared to wild-type mice. Taken together, HIPK2 plays a critical role in the initiation of DSB repair signaling by controlling WIP1 levels in response to IR.


Assuntos
Proteínas de Transporte/metabolismo , Dano ao DNA/efeitos da radiação , Reparo do DNA , Fosfoproteínas Fosfatases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Dano ao DNA/genética , Células HEK293 , Células HeLa , Histonas/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Fosforilação , Proteína Fosfatase 2C , Radiação Ionizante , Transdução de Sinais , Ubiquitinação
20.
J Gastroenterol ; 47(1): 37-48, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22015694

RESUMO

BACKGROUND: Lymph node metastasis (LNM) is recognized as an important factor in the progression of tumor malignancy. It is required to discover molecular markers for the prediction of LNM in gastric cancers (GCs). METHODS: An isotope coded affinity tag (ICAT) method and mass spectrometry were used for the quantitative profiling of LNM-related proteins. Western blot analysis of the identified proteins and immunohistochemistry on a tissue microarray comprising 120 GC cases were performed for validation. RESULTS: We identified 151 differentially expressed proteins (DEPs) with an abundance ratio greater than 1.5-fold. The proteins upregulated in LNM-negative GCs were largely populated with proteins related to cell death. Among the DEPs, galectin-2 was further tested because its expression level was significantly higher in LNM-negative GCs (~12-fold, p < 0.0001) and its expression is known to be not ubiquitous but confined to the gastrointestinal tract. Immunohistochemical analysis revealed that low expression of galectin-2 was significantly associated with LNM (p = 0.031) and advanced clinical stage (p = 0.024). The association of low galectin-2 with LNM was found even in early GCs (p = 0.020). CONCLUSION: Our results show that proteomic analysis coupled with immunohistochemistry using tissue microarray is a useful tool for identifying LNM-associated proteins in GC. Also, loss of galectin-2 might play an important role in the aggressiveness of GC.


Assuntos
Galectina 2/genética , Metástase Linfática/genética , Neoplasias Gástricas/patologia , Idoso , Biomarcadores Tumorais/genética , Western Blotting , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Marcação por Isótopo , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Proteômica/métodos , Neoplasias Gástricas/genética , Análise Serial de Tecidos , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA