Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmacology ; 108(6): 530-539, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37696255

RESUMO

INTRODUCTION: Hydrogen sulfide (H2S), known as a third gasotransmitter, is a signaling molecule that plays a regulatory role in physiological and pathophysiological processes. Decreased H2S levels were reported in inflammatory respiratory diseases such as asthma, chronic obstructive pulmonary disease, and pulmonary hypertension. H2S donors or drugs that increase H2S have emerged as novel treatments for inflammatory respiratory diseases. We previously showed that resveratrol (RVT) causes vascular relaxation and antioxidant effects by inducing H2S production. In the current study, we synthesized a new molecule Cpd2, as an RVT analog. We examined the effect of Cpd2 and its precursor chalcone compound (Cpd1) on H2S formation under both healthy and oxidative stress conditions in the lung, as well as vascular relaxation in the aorta. METHODS: Cpd2 synthesized from Cpd1 with microwaved in basic conditions. H2S formation was measured by H2S biosensor in the mice lungs under both healthy and pyrogallol-induced oxidative stress conditions in the presence/absence of H2S synthesis inhibitor aminooxyacetic acid (AOAA). The effect of compounds on vascular tonus is investigated in mice aorta by DMT myograph. RESULTS: RVT and Cpd2 significantly increased l-cysteine (l-cys) induced-H2S formation in the lung homogenates of healthy mice, but Cpd1 did not. Superoxide anion generator pyrogallol caused a decrease in H2S levels in mice lungs and Cpd2 restored it. Inhibition of Cpd2-induced H2S formation by AOAA confirmed that Cpd2 increases endogenous H2S formation in both healthy and oxidative stress conditions. Furthermore, we found that both Cpd1 and Cpd2 (10-8-10-4 M) caused vascular relaxation in mice aorta. DISCUSSION AND CONCLUSION: We found that Cpd2, a newly synthesized RVT analog, is an H2S-inducing molecule and vasorelaxant similar to RVT. Since H2S has antioxidant and anti-inflammatory effects, Cpd2 has a potential for the treatment of respiratory diseases where oxidative stress and decreased H2S levels are present.


Assuntos
Sulfeto de Hidrogênio , Doenças Respiratórias , Camundongos , Animais , Pirogalol/farmacologia , Antioxidantes/farmacologia , Resveratrol , Pulmão , Aorta , Sulfeto de Hidrogênio/farmacologia
2.
Eur J Pharmacol ; 931: 175182, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35940235

RESUMO

Pulmonary arterial hypertension is caused by complex structural and functional changes in the endothelial and smooth muscle cells of pulmonary arteries. Hydrogen sulfide (H2S), a gasotransmitter, can potentially treat pulmonary hypertension by relaxing the pulmonary arteries and decreasing bronchial pressure. Although the role of H2S in systemic circulation has been examined, the H2S levels in pulmonary arteries, the role of H2S in endothelium-dependent vasorelaxation and the L-cysteine/H2S pathway in monocrotaline-induced pulmonary arterial hypertension have not been investigated. The rats were divided into control, monocrotaline, monocrotaline + Na2S, and Na2S groups. The right ventricular pressure and hypertrophy were evaluated. KCl, acetylcholine, and L-cysteine responses were obtained in the main pulmonary arteries by wire myograph. H2S levels were measured in pulmonary arteries and lungs by methylene blue assay. Right ventricular pressure and hypertrophy were increased by monocrotaline and ameliorated by Na2S. The KCl-induced contractions and relaxing responses to acetylcholine and L-cysteine in pulmonary arteries and H2S production in the lungs and pulmonary arteries were significantly attenuated in the monocrotaline group and augmented in the monocrotaline + Na2S group. These findings suggest that H2S levels were reduced, and L-cysteine-induced and endothelium-dependent relaxations were impaired in the pulmonary arteries in monocrotaline-induced pulmonary arterial hypertension. The H2S donor, Na2S, prevented endothelial dysfunction and increased pulmonary artery pressure and hypertrophy. Also, Na2S enhanced the L-cysteine-mediated responses and restored the diminished H2S levels in pulmonary arteries and the lungs. The treatments targeting H2S might be beneficial for promoting vascular alterations, i.e. endothelial dysfunction and impaired H2S-mediated relaxation in pulmonary arterial hypertension.


Assuntos
Sulfeto de Hidrogênio , Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Acetilcolina/metabolismo , Acetilcolina/farmacologia , Animais , Cisteína/farmacologia , Cisteína/uso terapêutico , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/uso terapêutico , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/prevenção & controle , Hipertrofia/metabolismo , Monocrotalina/efeitos adversos , Artéria Pulmonar/metabolismo , Ratos , Sulfetos
3.
J Ethnopharmacol ; 284: 114823, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34775035

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Erectile dysfunction (ED) is the most common form of sexual dysfunction which has been the topic of great interest through the history by all cultures. It is now among the most treated health problems in men of all ages that develop under the influence of lifestyle factors and some diseases. Plants are extensively used to cure sexual dysfunction for centuries. Roots of Prangos sp. have been used to improve sexual performance in Anatolian traditional medicine and are rich of coumarin, furanocoumarin and their derivatives. Scientific research is necessary to support and validate the ethno-traditional uses of these plants. AIM OF THE STUDY: The aim of this study is to investigate the effects of the root extracts of P. pabularia, P. uechtritzii and P. heyniae on erectile function and to isolate and identify the chemical compounds of the most active extract and reveal possible pharmacological mechanism of the major compound of the extract with the strongest relaxant effect in mouse corpus cavernosum (MCC). MATERIALS AND METHODS: The roots of plants were extracted with chloroform, n-hexane and methanol. The compounds were isolated from the extract by column chromatography and structures were identified by NMR and MS. The relaxant effects of extracts (10-7-10-4 g/mL), (+)-oxypeucedanin (10-7-10-4 M) and Na2S (10-7-3 × 10-3 M) were tested in MCC strips by DMT myograph. To investigate the mechanism, the synthesis inhibitors of aminooxyacetic acid (AOAA, 10-2 M) and nitro-L-arginine methyl ester (L-NAME, 10-4 M) were used, respectively. H2S formation was evaluated basal and L-cysteine (L-cyst)-stimulated conditions by H2S microsensor. RESULTS: All extracts relaxed MCC in a concentration dependent manner. The maximum relaxing effects were achieved with chloroform extracts. Chloroform extract of P. pabularia (Pp-CE) was more potent than the others. Pp-CE-induced relaxations were significantly decreased by AOAA and L-NAME. (+)-Oxypeucedanin, the major compound of Pp-CE, induced relaxant responses and this effect was inhibited by AOAA, but not L-NAME. The relaxation of (+)-oxypeucedanin was found to be similar in view of Emax to positive control H2S donor Na2S. (+)-Oxypeucedanin increased L-cyst-stimulated H2S formation. Augmentation of H2S synthesis with (+)-oxypeucedanin was inhibited by AOAA. CONCLUSIONS: Pp-CE has the strongest effect on relaxation of MCC and this result supports the traditional aphrodisiac use of P. pabularia root extract in Anatolia. The pharmacological mechanisms of Pp-CE to relax MCC involve NO and H2S formation. (+)-Oxypeucedanin could be responsible for the H2S-mediated relaxations of Pp-CE in MCC.


Assuntos
Apiaceae/química , Furocumarinas/farmacologia , Pênis/irrigação sanguínea , Fitoterapia , Raízes de Plantas/química , Vasodilatadores/farmacologia , Animais , Furocumarinas/química , Masculino , Camundongos , Especificidade da Espécie , Vasodilatadores/química
4.
Andrology ; 8(6): 1728-1735, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32609430

RESUMO

BACKGROUND: Resistin is known as a potential mediator of obesity-associated insulin resistance. The high resistin level disrupts nitric oxide (NO)-mediated relaxation which is also important in erectile function. An antioxidant alkaloid, Boldine, is known as anti-diabetic and protects endothelial functions. OBJECTIVES: We aimed to investigate resistin expression in penile tissue in the presence of insulin resistance (IR) and the effect of Boldine treatment on erectile functions in the metabolic syndrome (MetS) rat model. MATERIALS AND METHODS: Wistar rats were randomly divided into three groups: Control, MetS, and boldine treated MetS group. MetS parameters were assessed by serum triglycerides (TG), uric acid (UA), glucose, insulin levels, HOMA index, and waist circumference (WC)/tibia length (TL) ratio. To evaluate erectile functions, intracavernous pressure (ICP)/mean arterial pressure (MAP) ratio was performed during cavernous nerve stimulation. Protein expressions of resistin, endothelial nitric oxide synthase (eNOS), p(S1177) eNOS, and insulin receptor-ß were evaluated by Western blotting. RESULTS: TG, glucose, insulin levels, weight, WC/TL ratio, HOMA index and resistin expression in penile tissue were significantly increased and ICP/MAP values, and p (S1177) eNOS expression in penile tissue were decreased in MetS group. Boldine treatment enhanced ICP/MAP values, insulin receptor-ß and p(S1177) eNOS expressions compared with the MetS group. DISCUSSION AND CONCLUSION: MetS caused a deterioration in erectile function accompanied by an increase in resistin expression and a reduction in eNOS enzyme activation in the rat penile tissues. Boldine treatment resulted in an improvement in erectile function, independent of resistin expression.


Assuntos
Antioxidantes/uso terapêutico , Aporfinas/uso terapêutico , Disfunção Erétil/fisiopatologia , Síndrome Metabólica/fisiopatologia , Fármacos Neuromusculares Despolarizantes/uso terapêutico , Resistina/metabolismo , Animais , Glicemia/análise , Pressão Sanguínea/fisiologia , Modelos Animais de Doenças , Insulina/sangue , Resistência à Insulina/fisiologia , Masculino , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos , Ratos Wistar , Receptor de Insulina/metabolismo , Triglicerídeos/sangue , Ácido Úrico/sangue
5.
Cytotechnology ; 70(6): 1537-1550, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30123923

RESUMO

Cotton, a staple fiber that grows around the seeds of the cotton plants (Gossypium), is produced throughout the world, and its by products, such as cotton fibers, cotton-seed oil, and cottonseed proteins, have a variety of applications. Cotton-seed contains gossypol, a natural phenol compound. (±)-Gossypol is a yellowish polyphenol that is derived from different parts of the cotton plant and contains potent anticancer properties. Tumor growth and metastasis are mainly related to angiogenesis; therefore, anti-angiogenic therapy targets the new blood vessels that provide oxygen and nutrients to actively proliferating tumor cells. The aim of the present study was to evaluate the anti-angiogenic potential of (±)-gossypol in vitro. (±)-Gossypol has anti-proliferative effects on cancer cell lines; however, its anti-angiogenic effects on normal cells have not been studied. Anti-proliferative activities of gossypol assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, anti-angiogenic activities using tube formation assay, and cell migration inhibition capability using a wound-healing assay on human umbilical vein endothelial cells (HUVECs) were revealed. (±)-Gossypol displayed the following potent anti-angiogenic activities in vitro: it inhibited the cell viability of HUVECs, it inhibited the migration of HUVECs, and disrupted endothelial tube formation in a dose-dependent manner. In addition, the anti-angiogenic effects of (±)-gossypol were investigated in ovo in a model using a chick chorioallantoic membrane (CAM). Decreases in capillary density were assessed and scored. (±)-Gossypol showed dose-dependent anti-angiogenic effects on CAM. These findings suggest that (±)-gossypol can be used as a new anti-angiogenic agent.

6.
Steroids ; 135: 9-20, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29678446

RESUMO

Chronic inflammation is associated to 25% of cancer cases according to epidemiological data. Therefore, inhibition of inflammation-induced carcinogenesis can be an efficient therapeutic approach for cancer chemoprevention in drug development studies. It is also determined that anti-inflammatory drugs reduce cancer incidence. Cell culture-based in vitro screening methods are used as a fast and efficient method to investigate the biological activities of the biomolecules. In addition, saponins are molecules that are isolated from natural sources and are known to have potential for tumor inhibition. Studies on the preparation of analogues of cycloartane-type sapogenols (9,19-cyclolanostanes) have so far been limited. Therefore we have decided to direct our efforts toward the exploration of new anti-tumor agents prepared from cycloastragenol and its production artifact astragenol. The semi-synthetic derivatives were prepared mainly by oxidation, condensation, alkylation, acylation, and elimination reactions. After preliminary studies, five sapogenol analogues, two of which were new compounds (2 and 3), were selected and screened for their inhibitory activity on cell viability and NFκB signaling pathway activity in LNCaP prostate cancer cells. We found that the astragenol derivatives 1 and 2 as well as cycloastragenol derivatives 3, 4, and 5 exhibited strong inhibitory activity on NFκB signaling leading the repression of NFκB transcriptional activation and suppressed cell proliferation. The results suggested that these molecules might have significant potential for chemoprevention of prostate carcinogenesis induced by inflammatory NFκB signaling pathway.


Assuntos
Carcinogênese/efeitos dos fármacos , NF-kappa B/metabolismo , Neoplasias da Próstata/patologia , Sapogeninas/química , Sapogeninas/farmacologia , Triterpenos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quimioprevenção , Dinoprostona/metabolismo , Humanos , Inflamação/patologia , Masculino , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
7.
Nitric Oxide ; 69: 45-50, 2017 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-28414104

RESUMO

The gasotransmitter nitric oxide (NO) has an important role in vascular function and a decrease in its bioavailability is accepted as a main pathological mechanism for cardiovascular diseases. However, other gasotransmitters such as hydrogen sulfide (H2S) are also generated by the endothelium and can also affect vascular tone and a crosstalk may exist between H2S and NO. We therefore investigated the consequences of deficiency, replacement or overexpression of endothelial nitric oxide synthase (eNOS) on H2S-induced vascular responses in murine carotid arteries. In pre-contracted carotid arteries from wild-type (WT) mice, l-cysteine elicited relaxation that was inhibited by the H2S synthesis inhibitor amino-oxyacetic acid (AOAA). Genetic deletion of eNOS increased l-cysteine-induced relaxation compared to WT, but the replacement of eNOS by adenoviral transfection or H2S synthesis inhibition by AOAA reversed it. Furthermore, eNOS deletion did not alter NaHS-induced relaxation in carotid arteries while eNOS overexpression/replacement increased NaHS-induced relaxation responses in carotid arteries from WT or eNOS-/-. We suggest that, endogenously produced H2S can compensate for impaired vasodilatory responses in the absence of NO to maintain vascular patency; while, eNOS abundance can limit endogenous H2S-induced vascular responses in mice carotid arteries. Our result suggests that endogenous vs. exogenous H2S-induced relaxation are reciprocally regulated by NO in mice carotid arteries.


Assuntos
Artérias Carótidas/fisiologia , Sulfeto de Hidrogênio/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Vasodilatadores/metabolismo , Ácido Amino-Oxiacético/farmacologia , Animais , Cisteína/administração & dosagem , Cisteína/metabolismo , Sulfeto de Hidrogênio/administração & dosagem , Masculino , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Vasoconstrição , Vasodilatação
8.
Pharmacol Res ; 113(Pt A): 38-43, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27521839

RESUMO

Erectile dysfunction (ED) is considered as a marker for cardiovascular diseases. Nitric oxide (NO) deficiency is the major cause of erectile dysfunction (ED). The role of hydrogen sulfide (H2S) in erection has recently been recognized and is receiving attention as a pharmacological target. Several studies have focused on the effect of H2S on NO-dependent relaxation, but the role of NO on H2S in penile tissue has not been studied yet. Unlike NO, H2S is mainly synthesized from smooth muscle cells rather than endothelial cells. We hypothesized that H2S may compensate for the decreased NO bioavailability and may be beneficial in severe ED where endothelial dysfunction is present. Thus we studied the effect of NO deficiency on H2S formation and vasorelaxation induced by l-cysteine, which is the substrate of the H2S producing enzymes in mice corpus cavernosum (MCC). NO deficiency induced by Nω-Nitro-l-arginine (L-NNA) was confirmed by the inhibition of acetylcholine-induced relaxation. l-cysteine, the substrate for the endogenous H2S production, caused a concentration-dependent relaxation that was reduced by CBS/CSE inhibitor aminooxyacetic acid (AOAA) in MCC strips. L-NNA caused a significant increase in l-cysteine-induced relaxation, and this effect was reversed by AOAA. On the contrary, no change in relaxation to NaHS (exogenous H2S donor) in MCC was observed. L-NNA increased H2S formation stimulated by l-cysteine in wild type MCC but not in CSE-/- mice. In parallel, the expression of both cysthationine γ lyase (CSE) and 3-mercaptopyruvate sulphurtransferase (3-MST) was increased, whereas cysthationine-ß synthase (CBS) was decreased in eNOS-/- MCC. We conclude that H2S plays a compensatory role in the absence of NO by enhancing the relaxation induced by endogenous H2S through CSE and 3-MPST in MCC, without altering downstream mechanisms. We suggest that H2S-targeting drugs may provide the maintenance of compensatory treatment in ED patients. This may be more relevant in ED with severe endothelial dysfunction, as H2S is mainly derived from smooth muscle.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Óxido Nítrico/metabolismo , Pênis/metabolismo , Animais , Cisteína/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Disfunção Erétil/metabolismo , Disfunção Erétil/fisiopatologia , Masculino , Camundongos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/fisiologia , Ereção Peniana/fisiologia , Vasodilatação/fisiologia
9.
Vascul Pharmacol ; 87: 76-82, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27538867

RESUMO

Reactive oxygen species (ROS) decreases bioavailability of nitric oxide (NO) and impairs NO-dependent relaxations. Like NO, hydrogen sulfide (H2S) is an antioxidant and vasodilator; however, the effect of ROS on H2S-induced relaxations is unknown. Here we investigated whether ROS altered the effect of H2S on vascular tone in mouse aorta and determined whether resveratrol (RVT) protects it via H2S. Pyrogallol induced ROS formation. It also decreased H2S formation and relaxation induced by l-cysteine and in mouse aorta. Pyrogallol did not alter sodium hydrogensulfide (NaHS)-induced relaxation suggesting that the pyrogallol effect on l-cysteine relaxations was due to endogenous H2S formation. RVT inhibited ROS formation, enhanced l-cysteine-induced relaxations and increased H2S level in aortas exposed to pyrogallol suggesting that RVT protects against "H2S-dysfunctions" by inducing H2S formation. Indeed, H2S synthesis inhibitor AOAA inhibited the protective effects of RVT. RVT had no effect on Ach-induced relaxation that is NO dependent and the stimulatory effect of RVT on H2S-dependent relaxation was also independent of NO. These results demonstrate that oxidative stress impairs endogenous H2S-induced relaxations and RVT offers protection by inducing H2S suggesting that targeting endogenous H2S pathway may prevent vascular dysfunctions associated by oxidative stress.


Assuntos
Antioxidantes/farmacologia , Sulfeto de Hidrogênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estilbenos/farmacologia , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Cisteína/metabolismo , Masculino , Camundongos , Óxido Nítrico/metabolismo , Pirogalol/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Resveratrol
10.
J Sex Med ; 12(10): 2004-12, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26437677

RESUMO

INTRODUCTION: Resveratrol (RVT) found in red wine protects against erectile dysfunction and relaxes penile tissue (corpus cavernosum) via a nitric oxide (NO) independent pathway. However, the mechanism remains to be elucidated. Hydrogen sulfide (H2 S) is a potent vasodilator and neuromodulator generated in corpus cavernosum. AIMS: We investigated whether RVT caused the relaxation of mice corpus cavernosum (MCC) through H2 S. METHODS: H2 S formation is measured by methylene blue assay and vascular reactivity experiments have been performed by DMT strip myograph in CD1 MCC strips. MAIN OUTCOME MEASURES: Endothelial NO synthase (eNOS) inhibitor Nω-Nitro-L-arginine (L-NNA, 0.1 mM) or H2 S inhibitor aminooxyacetic acid (AOAA, 2 mM) which inhibits both cystathionine-ß-synthase (CBS) and cystathionine-gamma-lyase (CSE) enzyme or combination of AOAA with PAG (CSE inhibitor) has been used in the presence/absence of RVT (0.1 mM, 30 min) to elucidate the role of NO or H2 S pathways on the effects of RVT in MCC. Concentration-dependent relaxations to RVT, L-cysteine, sodium hydrogen sulfide (NaHS) and acetylcholine (ACh) were studied. RESULTS: Exposure of murine corpus cavernosum to RVT increased both basal and L-cysteine-stimulated H2 S formation. Both of these effects were reversed by AOAA but not by L-NNA. RVT caused concentration-dependent relaxation of MCC and that RVT-induced relaxation was significantly inhibited by AOAA or AOAA + PAG but not by L-NNA. L-cysteine caused concentration-dependent relaxations, which are inhibited by AOAA or AOAA + PAG significantly. Incubation of MCC with RVT significantly increased L-cysteine-induced relaxation, and this effect was inhibited by AOAA + PAG. However, RVT did not alter the effect of exogenous H2 S (NaHS) or ACh-induced relaxations. CONCLUSIONS: These results demonstrate that RVT-induced relaxation is at least partly dependent on H2 S formation and acts independent of eNOS pathway. In phosphodiesterase 5 inhibitor (PDE-5i) nonresponder population, combination therapy with RVT may reverse erectile dysfunction via stimulating endogenous H2 S formation.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Relaxamento Muscular/efeitos dos fármacos , Ereção Peniana/efeitos dos fármacos , Pênis/patologia , Estilbenos/farmacologia , Vasodilatadores/farmacologia , Animais , Arginina/farmacologia , Cisteína/metabolismo , Cisteína/fisiologia , Masculino , Camundongos , Óxido Nítrico/metabolismo , Pênis/efeitos dos fármacos , Resveratrol , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA