Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Oncol ; 17(9): 1803-1820, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37458534

RESUMO

Mitochondrial glycolysis and hyperactivity of the phosphatidylinositol 3-kinase-protein kinase B (AKT) pathway are hallmarks of malignant brain tumors. However, kinase inhibitors targeting AKT (AKTi) or the glycolysis master regulator pyruvate dehydrogenase kinase (PDKi) have failed to provide clinical benefits for brain tumor patients. Here, we demonstrate that heterogeneous glioblastoma (GB) and medulloblastoma (MB) cell lines display only cytostatic responses to combined AKT and PDK targeting. Biochemically, the combined AKT and PDK inhibition resulted in the shutdown of both target pathways and priming to mitochondrial apoptosis but failed to induce apoptosis. In contrast, all tested brain tumor cell models were sensitive to a triplet therapy, in which AKT and PDK inhibition was combined with the pharmacological reactivation of protein phosphatase 2A (PP2A) by NZ-8-061 (also known as DT-061), DBK-1154, and DBK-1160. We also provide proof-of-principle evidence for in vivo efficacy in the intracranial GB and MB models by the brain-penetrant triplet therapy (AKTi + PDKi + PP2A reactivator). Mechanistically, PP2A reactivation converted the cytostatic AKTi + PDKi response to cytotoxic apoptosis, through PP2A-elicited shutdown of compensatory mitochondrial oxidative phosphorylation and by increased proton leakage. These results encourage the development of triple-strike strategies targeting mitochondrial metabolism to overcome therapy tolerance in brain tumors.


Assuntos
Neoplasias Encefálicas , Citostáticos , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Fosfatase 2/metabolismo , Citostáticos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Apoptose , Encéfalo , Linhagem Celular Tumoral
2.
Sci Rep ; 12(1): 13796, 2022 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-35963891

RESUMO

Therapeutic resistance to kinase inhibitors constitutes a major unresolved clinical challenge in cancer and especially in glioblastoma. Multi-kinase inhibitors may be used for simultaneous targeting of multiple target kinases and thereby potentially overcome kinase inhibitor resistance. However, in most cases the identification of the target kinases mediating therapeutic effects of multi-kinase inhibitors has been challenging. To tackle this important problem, we developed an actionable targets of multi-kinase inhibitors (AToMI) strategy and used it for characterization of glioblastoma target kinases of staurosporine derivatives displaying synergy with protein phosphatase 2A (PP2A) reactivation. AToMI consists of interchangeable modules combining drug-kinase interaction assay, siRNA high-throughput screening, bioinformatics analysis, and validation screening with more selective target kinase inhibitors. As a result, AToMI analysis revealed AKT and mitochondrial pyruvate dehydrogenase kinase PDK1 and PDK4 as kinase targets of staurosporine derivatives UCN-01, CEP-701, and K252a that synergized with PP2A activation across heterogeneous glioblastoma cells. Based on these proof-of-principle results, we propose that the application and further development of AToMI for clinically applicable multi-kinase inhibitors could provide significant benefits in overcoming the challenge of lack of knowledge of the target specificity of multi-kinase inhibitors.


Assuntos
Antineoplásicos , Glioblastoma , Glioblastoma/tratamento farmacológico , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteína Fosfatase 2 , Piruvato Desidrogenase Quinase de Transferência de Acetil , Estaurosporina/farmacologia
3.
J Biol Chem ; 295(13): 4194-4211, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32071079

RESUMO

Protein phosphatase 2A (PP2A) critically regulates cell signaling and is a human tumor suppressor. PP2A complexes are modulated by proteins such as cancerous inhibitor of protein phosphatase 2A (CIP2A), protein phosphatase methylesterase 1 (PME-1), and SET nuclear proto-oncogene (SET) that often are deregulated in cancers. However, how they impact cellular phosphorylation and how redundant they are in cellular regulation is poorly understood. Here, we conducted a systematic phosphoproteomics screen for phosphotargets modulated by siRNA-mediated depletion of CIP2A, PME-1, and SET (to reactivate PP2A) or the scaffolding A-subunit of PP2A (PPP2R1A) (to inhibit PP2A) in HeLa cells. We identified PP2A-modulated targets in diverse cellular pathways, including kinase signaling, cytoskeleton, RNA splicing, DNA repair, and nuclear lamina. The results indicate nonredundancy among CIP2A, PME-1, and SET in phosphotarget regulation. Notably, PP2A inhibition or reactivation affected largely distinct phosphopeptides, introducing a concept of nonoverlapping phosphatase inhibition- and activation-responsive sites (PIRS and PARS, respectively). This phenomenon is explained by the PPP2R1A inhibition impacting primarily dephosphorylated threonines, whereas PP2A reactivation results in dephosphorylation of clustered and acidophilic sites. Using comprehensive drug-sensitivity screening in PP2A-modulated cells to evaluate the functional impact of PP2A across diverse cellular pathways targeted by these drugs, we found that consistent with global phosphoproteome effects, PP2A modulations broadly affect responses to more than 200 drugs inhibiting a broad spectrum of cancer-relevant targets. These findings advance our understanding of the phosphoproteins, pharmacological responses, and cellular processes regulated by PP2A modulation and may enable the development of combination therapies.


Assuntos
Autoantígenos/genética , Hidrolases de Éster Carboxílico/genética , Proteínas de Ligação a DNA/genética , Chaperonas de Histonas/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Proteína Fosfatase 2/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Neoplasias/genética , Neoplasias/patologia , Neoplasias/terapia , Lâmina Nuclear/efeitos dos fármacos , Lâmina Nuclear/genética , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/genética , Fosforilação/efeitos dos fármacos , Proteína Fosfatase 2/genética , Proteoma/efeitos dos fármacos , Proto-Oncogene Mas , RNA Interferente Pequeno/genética , Biologia de Sistemas
4.
Cancer Res ; 80(7): 1414-1427, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32029551

RESUMO

For maximal oncogenic activity, cellular MYC protein levels need to be tightly controlled so that they do not induce apoptosis. Here, we show how ubiquitin ligase UBR5 functions as a molecular rheostat to prevent excess accumulation of MYC protein. UBR5 ubiquitinates MYC and its effects on MYC protein stability are independent of FBXW7. Silencing of endogenous UBR5 induced MYC protein expression and regulated MYC target genes. Consistent with the tumor suppressor function of UBR5 (HYD) in Drosophila, HYD suppressed dMYC-dependent overgrowth of wing imaginal discs. In contrast, in cancer cells, UBR5 suppressed MYC-dependent priming to therapy-induced apoptosis. Of direct cancer relevance, MYC and UBR5 genes were coamplified in MYC-driven human cancers. Functionally, UBR5 suppressed MYC-mediated apoptosis in p53-mutant breast cancer cells with UBR5/MYC coamplification. Furthermore, single-cell immunofluorescence analysis demonstrated reciprocal expression of UBR5 and MYC in human basal-type breast cancer tissues. In summary, UBR5 is a novel MYC ubiquitin ligase and an endogenous rheostat for MYC activity. In MYC-amplified, and p53-mutant breast cancer cells, UBR5 has an important role in suppressing MYC-mediated apoptosis priming and in protection from drug-induced apoptosis. SIGNIFICANCE: These findings identify UBR5 as a novel MYC regulator, the inactivation of which could be very important for understanding of MYC dysregulation on cancer cells. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/7/1414/F1.large.jpg.


Assuntos
Neoplasias da Mama/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Proteínas Proto-Oncogênicas c-myc/genética , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética , Animais , Animais Geneticamente Modificados , Apoptose/genética , Mama/patologia , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Feminino , Amplificação de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Modelos Animais , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA-Seq , Análise Serial de Tecidos , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/genética
5.
Sci Transl Med ; 10(450)2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-30021885

RESUMO

Kinase inhibitor resistance constitutes a major unresolved clinical challenge in cancer. Furthermore, the role of serine/threonine phosphatase deregulation as a potential cause for resistance to kinase inhibitors has not been thoroughly addressed. We characterize protein phosphatase 2A (PP2A) activity as a global determinant of KRAS-mutant lung cancer cell resistance across a library of >200 kinase inhibitors. The results show that PP2A activity modulation alters cancer cell sensitivities to a large number of kinase inhibitors. Specifically, PP2A inhibition ablated mitogen-activated protein kinase kinase (MEK) inhibitor response through the collateral activation of AKT/mammalian target of rapamycin (mTOR) signaling. Combination of mTOR and MEK inhibitors induced cytotoxicity in PP2A-inhibited cells, but even this drug combination could not abrogate MYC up-regulation in PP2A-inhibited cells. Treatment with an orally bioavailable small-molecule activator of PP2A DT-061, in combination with the MEK inhibitor AZD6244, resulted in suppression of both p-AKT and MYC, as well as tumor regression in two KRAS-driven lung cancer mouse models. DT-061 therapy also abrogated MYC-driven tumorigenesis. These data demonstrate that PP2A deregulation drives MEK inhibitor resistance in KRAS-mutant cells. These results emphasize the need for better understanding of phosphatases as key modulators of cancer therapy responses.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Mutação/genética , Inibidores de Proteínas Quinases/uso terapêutico , Proteína Fosfatase 2/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Linhagem Celular Tumoral , Senescência Celular/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
6.
Oncotarget ; 8(27): 44550-44566, 2017 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-28562352

RESUMO

Currently several combination treatments of mTor- and Ras-pathway inhibitors are being tested in cancer therapy. While multiple feedback loops render these central signaling pathways robust, they complicate drug targeting.Here, we describe a novel H-ras specific feedback, which leads to an inadvertent rapalog induced activation of tumorigenicity in Ras transformed cells. We find that rapalogs specifically increase nanoscale clustering (nanoclustering) of oncogenic H-ras but not K-ras on the plasma membrane. This increases H-ras signaling output, promotes mammosphere numbers in a H-ras-dependent manner and tumor growth in ovo. Surprisingly, also other FKBP12 binders, but not mTor-inhibitors, robustly decrease FKBP12 levels after prolonged (>2 days) exposure. This leads to an upregulation of the nanocluster scaffold galectin-1 (Gal-1), which is responsible for the rapamycin-induced increase in H-ras nanoclustering and signaling output. We provide evidence that Gal-1 promotes stemness features in tumorigenic cells. Therefore, it may be necessary to block inadvertent induction of stemness traits in H-ras transformed cells by specific Gal-1 inhibitors that abrogate its effect on H-ras nanocluster. On a more general level, our findings may add an important mechanistic explanation to the pleiotropic physiological effects that are observed with rapalogs.


Assuntos
Autorrenovação Celular/genética , Galectina 1/genética , Neoplasias/genética , Células-Tronco Neoplásicas/metabolismo , Proteínas ras/genética , Animais , Carcinogênese , Linhagem Celular Tumoral , Galectina 1/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases , Modelos Biológicos , Neoplasias/metabolismo , Neoplasias/patologia , Ligação Proteica , Esferoides Celulares , Proteína 1A de Ligação a Tacrolimo/genética , Proteína 1A de Ligação a Tacrolimo/metabolismo , Células Tumorais Cultivadas , Proteínas ras/metabolismo
7.
Eur Heart J ; 37(43): 3267-3278, 2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-27655226

RESUMO

AIMS: Genetics plays an important role in coronary heart disease (CHD) but the clinical utility of genomic risk scores (GRSs) relative to clinical risk scores, such as the Framingham Risk Score (FRS), is unclear. Our aim was to construct and externally validate a CHD GRS, in terms of lifetime CHD risk and relative to traditional clinical risk scores. METHODS AND RESULTS: We generated a GRS of 49 310 SNPs based on a CARDIoGRAMplusC4D Consortium meta-analysis of CHD, then independently tested it using five prospective population cohorts (three FINRISK cohorts, combined n = 12 676, 757 incident CHD events; two Framingham Heart Study cohorts (FHS), combined n = 3406, 587 incident CHD events). The GRS was associated with incident CHD (FINRISK HR = 1.74, 95% confidence interval (CI) 1.61-1.86 per S.D. of GRS; Framingham HR = 1.28, 95% CI 1.18-1.38), and was largely unchanged by adjustment for known risk factors, including family history. Integration of the GRS with the FRS or ACC/AHA13 scores improved the 10 years risk prediction (meta-analysis C-index: +1.5-1.6%, P < 0.001), particularly for individuals ≥60 years old (meta-analysis C-index: +4.6-5.1%, P < 0.001). Importantly, the GRS captured substantially different trajectories of absolute risk, with men in the top 20% of attaining 10% cumulative CHD risk 12-18 y earlier than those in the bottom 20%. High genomic risk was partially compensated for by low systolic blood pressure, low cholesterol level, and non-smoking. CONCLUSIONS: A GRS based on a large number of SNPs improves CHD risk prediction and encodes different trajectories of lifetime risk not captured by traditional clinical risk scores.


Assuntos
Doença das Coronárias , Feminino , Genômica , Cardiopatias , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Medição de Risco , Fatores de Risco
8.
Cancer Res ; 71(9): 3236-45, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21415164

RESUMO

Activation of lipid metabolism is an early event in carcinogenesis and a central hallmark of many cancers. However, the precise molecular composition of lipids in tumors remains generally poorly characterized. The aim of the present study was to analyze the global lipid profiles of breast cancer, integrate the results to protein expression, and validate the findings by functional experiments. Comprehensive lipidomics was conducted in 267 human breast tissues using ultraperformance liquid chromatography/ mass spectrometry. The products of de novo fatty acid synthesis incorporated into membrane phospholipids, such as palmitate-containing phosphatidylcholines, were increased in tumors as compared with normal breast tissues. These lipids were associated with cancer progression and patient survival, as their concentration was highest in estrogen receptor-negative and grade 3 tumors. In silico transcriptomics database was utilized in investigating the expression of lipid metabolism related genes in breast cancer, and on the basis of these results, the expression of specific proteins was studied by immunohistochemistry. Immunohistochemical analyses showed that several genes regulating lipid metabolism were highly expressed in clinical breast cancer samples and supported also the lipidomics results. Gene silencing experiments with seven genes [ACACA (acetyl-CoA carboxylase α), ELOVL1 (elongation of very long chain fatty acid-like 1), FASN (fatty acid synthase), INSIG1 (insulin-induced gene 1), SCAP (sterol regulatory element-binding protein cleavage-activating protein), SCD (stearoyl-CoA desaturase), and THRSP (thyroid hormone-responsive protein)] indicated that silencing of multiple lipid metabolism-regulating genes reduced the lipidomic profiles and viability of the breast cancer cells. Taken together, our results imply that phospholipids may have diagnostic potential as well as that modulation of their metabolism may provide therapeutic opportunities in breast cancer treatment.


Assuntos
Neoplasias da Mama/metabolismo , Metabolismo dos Lipídeos/fisiologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Progressão da Doença , Ácido Graxo Sintases/biossíntese , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Feminino , Perfilação da Expressão Gênica , Inativação Gênica , Humanos , Imuno-Histoquímica , Metabolismo dos Lipídeos/genética , Fosfolipídeos/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores de Estrogênio/metabolismo , Taxa de Sobrevida
9.
Diabetes ; 56(8): 1960-8, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17620421

RESUMO

OBJECTIVE: We sought to determine whether adipose tissue is inflamed in individuals with increased liver fat (LFAT) independently of obesity. RESEARCH DESIGN AND METHODS: A total of 20 nondiabetic, healthy, obese women were divided into normal and high LFAT groups based on their median LFAT level (2.3 +/- 0.3 vs. 14.4 +/- 2.9%). Surgical subcutaneous adipose tissue biopsies were studied using quantitative PCR, immunohistochemistry, and a lipidomics approach to search for putative mediators of insulin resistance and inflammation. The groups were matched for age and BMI. The high LFAT group had increased insulin (P = 0.0025) and lower HDL cholesterol (P = 0.02) concentrations. RESULTS: Expression levels of the macrophage marker CD68, the chemokines monocyte chemoattractant protein-1 and macrophage inflammatory protein-1alpha, and plasminogen activator inhibitor-1 were significantly increased, and those of peroxisome proliferator-activated receptor-gamma and adiponectin decreased in the high LFAT group. CD68 expression correlated with the number of macrophages and crown-like structures (multiple macrophages fused around dead adipocytes). Concentrations of 154 lipid species in adipose tissue revealed several differences between the groups, with the most striking being increased concentrations of triacylglycerols, particularly long chain, and ceramides, specifically Cer(d18:1/24:1) (P = 0.01), in the high LFAT group. Expression of sphingomyelinases SMPD1 and SMPD3 were also significantly increased in the high compared with normal LFAT group. CONCLUSIONS: Adipose tissue is infiltrated with macrophages, and its content of long-chain triacylglycerols and ceramides is increased in subjects with increased LFAT compared with equally obese subjects with normal LFAT content. Ceramides or their metabolites could contribute to adverse effects of long-chain fatty acids on insulin resistance and inflammation.


Assuntos
Tecido Adiposo/metabolismo , Ceramidas/metabolismo , Fígado Gorduroso/metabolismo , Tecido Adiposo/citologia , Adolescente , Adulto , Antígenos CD/genética , Antígenos de Diferenciação Mielomonocítica/genética , Contagem de Células Sanguíneas , Tamanho Celular , HDL-Colesterol/sangue , Citocinas/genética , Jejum , Fígado Gorduroso/complicações , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Feminino , Regulação da Expressão Gênica , Saúde , Humanos , Imuno-Histoquímica , Inflamação/complicações , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Insulina/sangue , Macrófagos/citologia , Pessoa de Meia-Idade , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Inibidor 1 de Ativador de Plasminogênio/genética , RNA Mensageiro/genética , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA