Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Asian J Surg ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39079861

RESUMO

OBJECTIVE: Segmentectomy has been widely performed in clinical practice, which required a comprehensive understanding of anatomical structure. In right lower lobe, studies of superior segment (S6) were relatively small-sized. And only one study focusing on subsuperior segment (S∗) was published, which showed different results with previous ones. As the close relationship between S6 and S∗, variation types and their prevalence rate were reported, aiming to providing larger-size study of S6 and showing new evidence on anatomical structure of S∗. METHODS: 800 CT imaging data were collected from patients in our hospital. Three-dimensional reconstruction was performed after quality check. All images were screened according to the definition of corresponding segment and anatomical variations were analyzed. RESULTS: The proportion of S6 variation types in the largest scale (718 patients) was reported with no significant difference compared to previous studies and newly classified subtypes of two-stem V6. The prevalence rate for S∗ in right lower lobe reached 28.3 % (203/718) with similar proportion of three types. Variation types and origins of pulmonary artery were analyzed in detail, finding two-stem A∗ only be observed in type III B∗. CONCLUSIONS: Through this study, the variation types and incidence rate of S6 were confirmed, and a different result of S∗ has been provided as well. The feasibility of the current classification standards and proposed new subclassifications were verified. The results would be a supplement to lung segmental anatomy and could advance researches in the future.

2.
Comput Struct Biotechnol J ; 23: 648-658, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38283853

RESUMO

Lung cancer's mortality is predominantly linked to post-chemotherapy recurrence, driven by the reactivation of dormant cancer cells. Despite the critical role of these reactivated cells in cancer recurrence and metastasis, the molecular mechanisms governing their therapeutic selection remain poorly understood. In this study, we conducted an integrative analysis by combining PacBio single molecule real-time (SMRT) sequencing with short reads Illumina RNA-seq. Our study revealed that cisplatin-induced dormant and reactivated cancer cells exhibited a noteworthy reduction in gene transcripts and alternative splicing events. Particularly, the differential alternative splicing events were found to be overlapping with the differentially expression genes and enriched in genes related to cell cycle and cell division. Utilizing ENCORI database and correlation analysis, we identified key splicing factors, including SRSF7, SRSF3, PRPF8, and HNRNPC, as well as RNA helicase such as EIF4A3, DDX39A, DDX11, and BRIP1, which were associated with the observed reduction in alternative splicing and subsequent decrease in gene expression. Our study demonstrated that lung cancer cells reduce gene transcripts through diminished alternative splicing events mediated by specific splicing factors and RNA helicase in response to the chemotherapeutic stress. These findings provide insights into the molecular mechanisms underlying the therapeutic selection and reactivation of dormant cancer cells. This discovery opens a potential avenue for the development of therapeutic strategies aimed at preventing cancer recurrence following chemotherapy.

3.
Cancer Lett ; 582: 216567, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070822

RESUMO

EphB1 is implicated in numerous physiological and pathological processes, including nervous system diseases, cardiovascular diseases and cancers. It binds to membrane-bound ligands and drives bidirectional signaling. EphB1, along with its ligand ehrinB, plays a pivotal role in activating immune cells. However, despite its presence in dendritic cells (DCs), EphB1's involvement in the differentiation and maturation of DCs in cancers remains inadequately understood. In this study, we found compromised differentiation and maturation of DCs in EphB1-/- mice bearing lung adenocarcinoma syngeneic tumors. Our in vitro assays revealed that EphB1 phosphorylation induced DC differentiation and maturation. Cox-2, a key enzyme involved in the production of proinflammatory molecules, is implicated in DC differentiation induced by phosphorylated EphB1. Additionally, the study has identified lead compounds that specifically target EphB1 phosphorylation sites. Collectively, this research on EphB1 phosphorylation has provided valuable insights into the regulation of immune cell functionality and holds the potential for the development of innovative therapeutic strategies for a range of diseases.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Camundongos , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Transdução de Sinais , Diferenciação Celular , Células Dendríticas
4.
BMC Microbiol ; 23(1): 81, 2023 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-36966280

RESUMO

As the Human Microbiome Project (HMP) progresses, the relationship between microbes and human health has been receiving increasing attention. A growing number of reports support the correlation between cancer and microbes. However, most studies have focused on bacteria, rather than fungal communities. In this study, we studied the alteration in lung mycobiome in patients with non-small-cell lung cancer (NSCLC) using metagenomic sequencing and qPCR. The higher fungal diversity and more complex network were observed in the patients with NSCLC. In addition, Alternaria arborescens was found as the most relevant fungus to NSCLC, and the enrichment of it in cancerous tissue was also detected. This study proposes that the changes in fungal communities may be closely related to lung cancer, and provides insights into further exploration the relationship between lung cancer and fungi.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Micobioma , Humanos , Fungos/genética , Pulmão
5.
Chin Med J Pulm Crit Care Med ; 1(3): 161-170, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39171127

RESUMO

Lung cancer is the leading cause of cancer-related deaths worldwide. Tobacco smoking and air pollution are believed to be responsible for more than 90% of lung cancers. Respiratory pathogens are also known to be associated with the initiation and development of lung cancer. Despite the fact that the bacterial biomass in the lungs is lower than that in the intestinal tract, emerging evidence indicates that the lung is colonized by a diverse array of microbes. However, there is limited knowledge regarding the role of dysbiosis of the lung microbiota in the progression of lung cancer. In this review, we summarize the current information about the relationship between the microbiome and lung cancer. The objective is to provide an overview of the core composition of the microbiota in lung cancer as well as the role of specific dysbiosis of the lung microbiota in the progression of lung cancer and treatment of the disease.

6.
Cell Death Dis ; 13(11): 980, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36402751

RESUMO

Reactivation of chemotherapy-induced dormant cancer cells is the main cause of relapse and metastasis. The molecular mechanisms underlying remain to be elucidated. In this study, we introduced a cellular model that mimics the process of cisplatin responsiveness in NSCLC patients. We found that during the process of dormancy and reactivation induced by cisplatin, NSCLC cells underwent sequential EMT-MET with enrichment of cancer stem cells. The ATAC-seq combined with motif analysis revealed that OCT4-SOX2-TCF-NANOG motifs were associated with the enrichment of cancer stem cells induced by chemotherapy. Gene expression profiling suggested a dynamic regulatory mechanism during the process of enrichment of cancer stem cells, where Nanog showed upregulation in the dormant state and SOX2 showed upregulation in the reactivated state. Further, we showed that EphB1 and p-EphB1 showed dynamic expression in the process of cancer cell dormancy and reactivation, where the expression profiles of EphB1 and p-EphB1 showed negatively correlated. In the dormant EMT cells which showed disrupted cell-cell contacts, ligand-independent EphB1 promoted entry of lung cancer cells into dormancy through activating p-p38 and downregulating E-cadherin. On the contrary, in the state of MET, in which cell-cell adhesion was recovered, interactions of EphB1 and ligand EphrinB2 in trans promoted the stemness of cancer cells through upregulating Nanog and Sox2. In conclusion, lung cancer stem cells were enriched during the process of cellular response to chemotherapy. EphB1 cis- and trans- signalings function in the dormant and reactivated state of lung cancer cells respectively. It may provide a therapeutic strategy that target the evolution process of cancer cells induced by chemotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Ligantes , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Recidiva Local de Neoplasia , Células-Tronco Neoplásicas/metabolismo , Receptores Proteína Tirosina Quinases , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo
7.
Mol Ther Nucleic Acids ; 26: 269-279, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34513309

RESUMO

Cisplatin-based chemotherapy remains the standard care for non-small cell lung cancer (NSCLC) patients. Relapse after chemotherapy-induced dormancy affects the overall survival of patients. The evolution of cancer cells under chemotherapy stress is regulated by transcription factors (TFs) with binding sites initially buried deep within inaccessible chromatin. The transcription machinery and dynamic epigenetic alterations during the process of dormancy-reactivation of lung cancer cells after chemotherapy need to be investigated. Here, we investigated the chromatin accessibility of lung cancer cells after cisplatin treatment, using an assay for transposase-accessible chromatin sequencing (ATAC-seq). We observed that global chromatin accessibility was extensively improved. Transcriptional Regulatory Relationships Unraveled by Sentence-based Text mining (TRRUST) v.2 was used to elucidate TF-target interaction during the process of dormancy and reactivation. Enhancer regions and motifs specific to key TFs including JUN, MYC, SMAD3, E2F1, SP1, CTCF, SMAD4, STAT3, NFKB1, and KLF4 were enriched in differential loci ATAC-seq peaks of dormant and reactivated cancer cells induced by chemotherapy. The findings suggest that these key TFs regulated gene expressions during the process of dormancy and reactivation of cancer cells through altering promoter accessibility of target genes. Our study helps advance understanding of how cancer cells adapt to the stress induced by chemotherapy through TF binding motif accessibility.

8.
Thorac Cancer ; 12(19): 2601-2610, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34520129

RESUMO

BACKGROUND: Cisplatin-based chemotherapy is a therapeutic strategy against non-small cell lung cancer (NSCLC). However, cancers relapse after chemotherapy due to a dormant state of residual cancer cells. Extracellular vesicles and particles (EVPs) are active carriers of proteins and nucleic acid. Here, we aimed to study the molecular alterations and proteomic characteristics of EPV in dormant and reactivated cancer cells induced by cisplatin. METHODS: We used a short-term single dose of cisplatin to induce the dormant and reactivated cell status. We examined the gene expressional profiling and proteomic profiling of EVPs from dormant and reactivated cancer cells by RNA-sequencing and LC-MS/MS. RESULTS: We found substantial changes in gene expression and protein level in EVP. The genes with higher expression in dormant cancer cells were lipid transporter- and lipid metabolic-related genes. A total of 111 EVP proteins were upregulated in dormant cancer cells compared to those in control cells. Fifty differential expressed proteins (DEPs) were identified in EVPs from reactivated cancer cells compared to those in dormant cancer cells. Among the DEPs, we found that apolipoproteins such as APOA1 and APOE were significantly increased in dormant cancer cell-derived EVPs. Integration of EVP proteomes with transcriptional profiles of cancer cells revealed that the proteomic profiling of EVP derived from cancer cells can reflect the cellular status of cancer cells, which showed an activated lipid metabolism in dormant state. CONCLUSION: Lipoproteins enriched in EVPs reflect the activated lipid metabolism in dormant cancer cells and may provide potential biomarkers or therapeutic targets for cisplatin-based therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Cisplatino/farmacologia , Vesículas Extracelulares/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Proteômica , Células A549 , Antineoplásicos/farmacologia , Humanos , Mapas de Interação de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA