Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurosci Lett ; 801: 137164, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36868396

RESUMO

AIM: We aimed to study the influence of sevoflurane on the nucleotide-binding domain and Leucine-rich repeat protein 3 (NLRP3) pathways in rats with cerebral ischemia/reperfusion (I/R) injury. METHODS: Sixty Sprague-Dawley rats were equally divided into five groups randomly: sham-operated, cerebral I/R, sevoflurane (Sevo), NLRP3 inhibitor-treated (MCC950), and sevoflurane and NLRP3 inducer-treated groups. Rats' neurological functions were assessed using Longa scoring after 24 h of reperfusion, after which they were sacrificed, and cerebral infarction area was determined by triphenyl tetrazolium chloride staining. Pathological changes in damaged portions were assessed using hematoxylin-eosin and Nissl staining, and cell apoptosis was detected by terminal-deoxynucleotidyl transferase-mediated nick end labeling staining. Interleukin 1 beta (IL-1ß), tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), interleukin-18 (IL-18), malondialdehyde (MDA), and superoxide dismutase (SOD) levels in brain tissues were determined using enzyme-linked immunosorbent assay. Reactive oxygen species (ROS) levels were analyzed using a ROS assay kit. Protein levels of NLRP3, caspase-1, and IL-1ß were determined by western blot. RESULTS: Neurological function scores, cerebral infarction areas, and neuronal apoptosis index were decreased in the Sevo and MCC950 groups than in the I/R group. IL-1ß, TNF-α, IL-6, IL-18, NLRP3, caspase-1, and IL-1ß levels decreased in the Sevo and MCC950 groups (p < 0.05). ROS and MDA levels increased, but SOD levels increased in the Sevo and MCC950 groups than in the I/R group. NLPR3-inducer nigericin eliminated the protective effects of sevoflurane on cerebral I/R injury in rats. CONCLUSION: Sevoflurane could alleviate cerebral I/R-induced brain damage by inhibiting the ROS-NLRP3 pathway.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Ratos , Animais , Sevoflurano/farmacologia , Ratos Sprague-Dawley , Interleucina-18 , Espécies Reativas de Oxigênio/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interleucina-6 , Fator de Necrose Tumoral alfa/metabolismo , Doenças Neuroinflamatórias , Isquemia Encefálica/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Caspase 1/metabolismo , Infarto Cerebral/tratamento farmacológico , Reperfusão , Superóxido Dismutase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA