Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 273(Pt 1): 133074, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38866293

RESUMO

Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer, has a poor prognosis and limited access to efficient targeted treatments. Chronic unpredictable mild stress (CUMS) is highly risk factor for TNBC occurrence and development. Type X collagen (COL10A1), a crucial protein component of the extracellular matrix, ranks second among all aberrantly expressed genes in TNBC, and it is significantly up-regulated under CUMS. Nevertheless, the impact of CUMS and COL10A1 on TNBC, along with the underlying mechanisms are still unclear. In this research, we studied the effect of CUMS-induced norepinephrine (NE) elevation on TNBC, and uncovered that it notably enhanced TNBC cell proliferation, migration, and invasion in vitro, and also fostering tumor growth and lung metastasis in vivo. Additionally, our investigation found that COL10A1 directly interacted with integrin subunit beta 1 (ITGB1), then activates the downstream PI3K/AKT signaling pathway, thereby promoting TNBC growth and metastasis, while it was reversed by knocking down of COL10A1 or ITGB1. Our study demonstrated that the TNBC could respond to CUMS, and advocate for COL10A1 as a pivotal therapeutic target in TNBC treatment.


Assuntos
Proliferação de Células , Colágeno Tipo X , Integrina beta1 , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Neoplasias de Mama Triplo Negativas , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Integrina beta1/metabolismo , Integrina beta1/genética , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Feminino , Animais , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colágeno Tipo X/metabolismo , Colágeno Tipo X/genética , Progressão da Doença , Camundongos , Movimento Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes
2.
Biomater Sci ; 12(5): 1332-1334, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38362932

RESUMO

Correction for 'MiR-4458-loaded gelatin nanospheres target COL11A1 for DDR2/SRC signaling pathway inactivation to suppress the progression of estrogen receptor-positive breast cancer' by Jie Liu et al., Biomater. Sci., 2022, 10, 4596-4611, https://doi.org/10.1039/D2BM00543C.

3.
Prog Biophys Mol Biol ; 187: 36-50, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280492

RESUMO

Tissue repair and regeneration is a vital biological process in organisms, which is influenced by various internal mechanisms and microenvironments. Pulsed electromagnetic fields (PEMFs) are becoming a potential medical technology due to its advantages of effectiveness and non-invasiveness. Numerous studies have demonstrated that PEMFs can stimulate stem cell proliferation and differentiation, regulate inflammatory reactions, accelerate wound healing, which is of great significance for tissue regeneration and repair, providing a solid basis for enlarging its clinical application. However, some important issues such as optimal parameter system and potential deep mechanisms remain to be resolved due to PEMFs window effect and biological complexity. Thus, it is of great importance to comprehensively summarizing and analyzing the literature related to the biological effects of PEMFs in tissue regeneration and repair. This review expounded the biological effects of PEMFs on stem cells, inflammation response, wound healing and musculoskeletal disorders in order to improve the application value of PEMFs in medicine. It is believed that with the continuous exploration of biological effects of PEMFs, it will be applied increasingly widely to tissue repair and other diseases.


Assuntos
Campos Eletromagnéticos , Células-Tronco Mesenquimais , Diferenciação Celular , Cicatrização , Células-Tronco
4.
Prog Biophys Mol Biol ; 185: 1-16, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37793504

RESUMO

The mechanical environment is important for tumorigenesis and progression. Tumor cells can sense mechanical signals by mechanosensitive receptors, and these mechanical signals can be converted to biochemical signals to regulate cell behaviors, such as cell differentiation, proliferation, migration, apoptosis, and drug resistance. Here, we summarized the effects of the mechanical microenvironment on breast cancer cell activity, and mechanotransduction mechanism from cellular microenvironment to cell membrane, and finally to the nucleus, and also relative mechanosensitive proteins, ion channels, and signaling pathways were elaborated, therefore the mechanical signal could be transduced to biochemical or molecular signal. Meanwhile, the mechanical models commonly used for biomechanics study in vitro and some quantitative descriptions were listed. It provided an essential theoretical basis for the occurrence and development of mechanosensitive breast cancer, and also some potential drug targets were proposed to treat such disease.


Assuntos
Neoplasias da Mama , Mecanotransdução Celular , Humanos , Feminino , Mecanotransdução Celular/fisiologia , Canais Iônicos/metabolismo , Transdução de Sinais , Fenômenos Biomecânicos , Microambiente Tumoral
5.
ACS Appl Mater Interfaces ; 15(43): 49931-49942, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37856675

RESUMO

The skin secretion of Andrias davidianus (SSAD) is a novel biological adhesive raw material under development. This material exhibits robust adhesion while maintaining the flexibility of the wound. It also has the potential for large-scale production, making it promising for practical application explore. Hence, in-depth research on methods to fine-tune SSAD properties is of great importance to promote its practical applications. Herein, we aim to enhance the adhesive and healing properties of SSAD by incorporating functional components. To achieve this goal, we selected 3,4-dihydroxy-l-phenylalanine and vaccarin as the functional components and mixed them with SSAD, resulting in a new bioadhesive, namely, a formulation termed "enhanced SSAD" (ESSAD). We found that the ESSAD exhibited superior adhesive properties, and its adhesive strength was improved compared with the SSAD. Moreover, ESSAD demonstrated a remarkable ability to promote wound healing. This study presents an SSAD-based bioadhesive formulation with enhanced properties, affirming the feasibility of developing SSAD-based adhesive materials with excellent performance and providing new evidence for the application of SSAD. This study also aims to show that SSAD can be mixed with other substances, and addition of effective components to SSAD can be studied to further adjust or improve its performance.


Assuntos
Adesivos Teciduais , Cicatrização , Humanos , Adesivos/farmacologia , Pele , Adesivos Teciduais/farmacologia , Aderências Teciduais , Muco , Hidrogéis
6.
Life Sci ; 332: 122084, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37716504

RESUMO

Breast cancer (BC) metastasis is an enormous challenge targeting BC therapy. The extracellular matrix (ECM), the principal component of the BC metastasis niche, is the pivotal driver of breast tumor development, whose biochemical and biophysical characteristics have attracted widespread attention. Here, we review the biological effects of ECM constituents and the influence of ECM stiffness on BC metastasis and drug resistance. We provide an overview of the relative signal transduction mechanisms, existing metastasis models, and targeted drug strategies centered around ECM stiffness. It will shed light on exploring more underlying targets and developing specific drugs aimed at ECM utilizing biomimetic platforms, which are promising for breast cancer treatment.

7.
Food Funct ; 14(10): 4621-4631, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37158592

RESUMO

The abnormal accumulation of fused in sarcoma (FUS) is a pathological hallmark in a proportion of patients with frontotemporal dementia and amyotrophic lateral sclerosis. Therefore, the clearance of FUS aggregates is a possible therapeutic strategy for FUS-associated neurodegenerative diseases. This study reports that curcumin can strongly suppress FUS droplet formation and stress granule aggregation of FUS. Fluorescence spectra and isothermal titration calorimetry showed that curcumin can bind FUS through hydrophobic interactions, thereby reducing the ß-sheet content of FUS. Aggregated FUS sequesters pyruvate kinase, leading to reduced ATP levels. However, results from a metabolomics study revealed that curcumin changed the metabolism pattern and differentially expressed metabolites were enriched in glycolysis. Curcumin attenuated FUS aggregation-mediated sequestration of pyruvate kinase and restored cellular metabolism, consequently increasing ATP levels. These results indicate that curcumin is a potent inhibitor of FUS liquid-liquid phase separation and provide novel insights into the effect of curcumin in ameliorating abnormal metabolism.


Assuntos
Curcumina , Demência Frontotemporal , Sarcoma , Humanos , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Curcumina/farmacologia , Demência Frontotemporal/metabolismo , Trifosfato de Adenosina , Mutação , Proteína FUS de Ligação a RNA/química , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo
8.
Biomacromolecules ; 24(1): 1-18, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36507729

RESUMO

Amyloid protein cross-seeding is a peculiar phenomenon of cross-spreading among different diseases. Unlike traditional infectious ones, diseases caused by amyloid protein cross-seeding are spread by misfolded proteins instead of pathogens. As a consequence of the interactions among misfolded heterologous proteins or polypeptides, amyloid protein cross-seeding is considered to be the crucial cause of overlapping pathological transmission between various protein misfolding disorders (PMDs) in multiple tissues and cells. Here, we briefly review the phenomenon of cross-seeding among amyloid proteins. As an interesting example worth mentioning, the potential links between the novel coronavirus pneumonia (COVID-19) and some neurodegenerative diseases might be related to the amyloid protein cross-seeding, thus may cause an undesirable trend in the incidence of PMDs around the world. We then summarize the theoretical models as well as the experimental techniques for studying amyloid protein cross-seeding. Finally, we conclude with an outlook on the challenges and opportunities for basic research in this field. Cross-seeding of amyloid opens up a new perspective in our understanding of the process of amyloidogenesis, which is crucial for the development of new treatments for diseases. It is therefore valuable but still challenging to explore the cross-seeding system of amyloid protein as well as to reveal the structural basis and the intricate processes.


Assuntos
COVID-19 , Doenças Neurodegenerativas , Humanos , Proteínas Amiloidogênicas , Peptídeos beta-Amiloides/química , Amiloide/metabolismo
9.
Biomater Sci ; 10(16): 4596-4611, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35792605

RESUMO

RNA interference is a promising way to treat cancer and the construction of a stable drug delivery system is critically important for its application. Gelatin nanospheres (GNs) comprise a biodegradable drug vehicle with excellent biocompatibility, but there are limited studies on its delivery and role in the stabilization of miRNA and siRNA. Breast cancer is the most diagnosed type of female cancer worldwide. Abnormal miRNA expression is closely related to the occurrence and progression of estrogen receptor-positive (ER+) breast cancer. In this study, miR-4458 was upregulated in ER+ breast cancer and could inhibit MCF-7 cell viability, colony formation, migration, and invasion. Collagen type XI alpha 1 (COL11A1) was identified as a directly interacting protein of miR-4458 and an important component of the extracellular matrix. High COL11A1 expression was positively correlated with poor prognosis, lower overall survival, disease-free survival, and a late tumor-node-metastasis stage. COL11A1 knockdown could inhibit MCF-7 cell migration and invasion. GNs were used to load a miR-4458 mimic or COL11A1 siRNA (si-COL11A1) to achieve sustained and controlled release in xenograft nude mice. Their tumor volume was decreased, tumor cell apoptosis was promoted, and hepatic metastasis was significantly inhibited. Moreover, the DDR2/SRC signaling pathway was inactivated after transfection with the miR-4458 mimic and si-COL11A1. In conclusion, GNs can be potentially used to deliver siRNA or miRNA, and miR-4458 and COL11A1 can be possible targets for ER+ breast cancer treatment.


Assuntos
Neoplasias da Mama , Receptor com Domínio Discoidina 2 , MicroRNAs , Nanosferas , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Colágeno Tipo XI/genética , Colágeno Tipo XI/metabolismo , Receptor com Domínio Discoidina 2/genética , Receptor com Domínio Discoidina 2/metabolismo , Feminino , Gelatina/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Nus , MicroRNAs/metabolismo , RNA Interferente Pequeno/uso terapêutico , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/uso terapêutico , Transdução de Sinais , Quinases da Família src
10.
J Control Release ; 345: 20-37, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35248648

RESUMO

Polymeric carriers for RNA therapy offer potential advantages in terms of low immunogenicity, promoting modifiability and accelerating intracellular transport. However, balancing high transfection efficacy with low toxicity remains challenging with polymer-based vehicles; indeed, polyethyleneimine (PEI) remains the "gold standard" polymer for this purpose despite its significant toxicity limitations. Herein, we demonstrate the potential of polyvinylamine (PVAm), a commodity high-charge cationic polymer used in the papermaking industry and has similar structure with PEI, as an alternative carrier for RNA delivery. High levels of transfection of normal, tumor, and stem cells with a variety of RNA cargoes including small interfering RNA (siRNA), microRNA (miRNA), and recombinant RNA can be achieved in vitro under the proper complex conditions. While, both the anti-tumor effect achieved in a xenograft osteosarcoma model and lipid-lowering activity observed in a hyperlipidemia mice indicate the potential for highly effective in vivo activity. Of note, both the transfection efficiency and the cytotoxicity of PVAm compare more favorably with those of PEI, with PVAm offering the additional advantages of simpler purification and significantly lower cost. In addition, the mechanism for the difference in transfection efficiency between PVAm and PEI is explored by molecular docking as well as analyzing the process of association and dissociation between polymers (PVAm and PEI) and nucleic acids. Our research provides a novel, non-toxic, and cost-effective carrier candidate for next generation RNA therapy, and elucidates the potential mechanism of PVAm for its efficient delivery of RNA.


Assuntos
Polietilenoimina , Polímeros , Animais , Excipientes , Humanos , Camundongos , Simulação de Acoplamento Molecular , Polietilenoimina/química , Polímeros/química , Polivinil , RNA Interferente Pequeno , Transfecção
11.
Mol Carcinog ; 60(8): 538-555, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34062009

RESUMO

Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer. Some microRNAs (miRNAs) were abnormally expressed in TNBC, and they are closely related to the occurrence and progression of TNBC. Here, we found that miR-506 was significantly downregulated in TNBC and relatively lower miR-506 expression predicted a poorer prognosis. Moreover, we found that miR-506 could inhibit MDA-MB-231 cell viability, colony formation, migration, and invasion, and suppress the ERK/Fos oncogenic signaling pathway through upregulating its direct target protein proenkephalin (PENK). Therefore, miR-506 was proposed as a nucleic acid drug for TNBC therapy. However, miRNA is unstable in vivo, which limiting its application as a therapeutic drug via conventional oral or injected therapies. Here, a gelatin nanosphere (GN) delivery system was applied for the first time to load exogenous miRNA. Exogenous miR-506 mimic was loaded on GNs and injected into the in situ TNBC animal model, and the miR-506 could achieve sustained and controlled release. The results confirmed that overexpression of miR-506 and PENK in vivo through loading on GNs inhibited in situ triple-negative breast tumor growth and metastasis significantly in the xenograft model. Moreover, we indicated that the ERK/Fos signaling pathway was intensively inactivated after overexpression of miR-506 and PENK both in vitro and in vivo, which was further validated by the ERK1/2-specific inhibitor SCH772984. In conclusion, this study demonstrates that miR-506-loaded GNs have great potential in anti-TNBC aggressiveness therapy.


Assuntos
Encefalinas/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Precursores de Proteínas/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Feminino , Gelatina , Técnicas de Transferência de Genes , Humanos , Camundongos , MicroRNAs/administração & dosagem , Nanosferas , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Life Sci ; 272: 119238, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33600860

RESUMO

Non-coding RNAs (ncRNAs) include miRNA, lncRNA, and circRNA. NcRNAs are involved in multiple biological processes, including chromatin remodeling, signal transduction, post-transcriptional modification, cell autophagy, carbohydrate metabolism, and cell cycle regulation. Triple negative breast cancer (TNBC) is notorious for high invasiveness and metastasis, poor prognosis, and high mortality, and it is the most malignant breast cancer, while the effective targets for TNBC treatment are still lacking. NcRNAs act as oncogenes or suppressor genes, as well as promote or inhibit the occurrence and development of TNBC. Here, we reviewed some important miRNAs, lncRNAs, circRNAs, their target(s) and molecular mechanisms in TNBC. It is benefited to understand the occurrence and development of TNBC, further some ncRNAs might be potential targets for TNBC treatment.


Assuntos
RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Biomarcadores Tumorais/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , MicroRNAs/genética , Prognóstico , RNA Circular/genética , RNA Longo não Codificante/genética , Transcriptoma/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
13.
J Cell Biochem ; 121(4): 2756-2769, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31693255

RESUMO

Breast cancer (BC) and prostate cancer (PC) are the second most common malignant tumors in women and men in western countries, respectively. The risks of death are 14% for BC and 9% for PC. Abnormal estrogen and androgen levels are related to carcinogenesis of the breast and prostate. Estradiol stimulates cancer development in BC. The effect of estrogen on PC is concentration-dependent, and estrogen can regulate androgen production, further affecting PC. Estrogen can also increase the risk of androgen-induced PC. Androgen has dual effects on BC via different metabolic pathways, and the role of the androgen receptor (AR) in BC also depends on cell subtype and downstream target genes. Androgen and AR can stimulate both primary PC and castration-resistant PC. Understanding the mechanisms of the effects of estrogen and androgen on BC and PC may help us to improve curative BC and PC treatment strategies.


Assuntos
Androgênios/metabolismo , Neoplasias da Mama/metabolismo , Estrogênios/metabolismo , Neoplasias da Próstata/metabolismo , Animais , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Estradiol , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Fosforilação , Receptores Androgênicos/metabolismo , Receptores de Estrogênio/metabolismo , Risco , Transdução de Sinais
14.
Cardiorenal Med ; 10(1): 42-50, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31694019

RESUMO

INTRODUCTION: Vascular calcification (VC) is a complex, regulated process involved in many disease entities. So far, there are no treatments to reverse it. Exploring novel strategies to prevent VC is important and necessary for VC-related disease intervention. OBJECTIVE: In this study, we evaluated whether MOTS-c, a novel mitochondria-related 16-aa peptide, can reduce vitamin D3 and nicotine-induced VC in rats. METHODS: Vitamin D3 plus nicotine-treated rats were injected with MOTS-c at a dose of 5 mg/kg once a day for 4 weeks. Blood pressure, heart rate, and body weight were measured, and echocardiography was performed. The expression of phosphorylated adenosine monophosphate-activated protein kinase (AMPK) and the angiotensin II type 1 (AT-1) and endothelin B (ET-B) receptors was determined by Western blot analysis. RESULTS: Our results showed that MOTS-c treatment significantly attenuated VC. Furthermore, we found that the level of phosphorylated AMPK was increased and the expression levels of the AT-1 and ET-B receptors were decreased after MOTS-c treatment. CONCLUSIONS: Our findings provide evidence that MOTS-c may act as an inhibitor of VC by activating the AMPK signaling pathway and suppressing the expression of the AT-1 and ET-B receptors.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Mitocondriais/metabolismo , Calcificação Vascular/metabolismo , Animais , Colecalciferol/administração & dosagem , Colecalciferol/efeitos adversos , Colecalciferol/metabolismo , Masculino , Proteínas Mitocondriais/administração & dosagem , Proteínas Mitocondriais/efeitos adversos , Proteínas Mitocondriais/farmacologia , Modelos Animais , Nicotina/administração & dosagem , Nicotina/efeitos adversos , Nicotina/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina/efeitos dos fármacos , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor de Endotelina B/efeitos dos fármacos , Receptor de Endotelina B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Calcificação Vascular/induzido quimicamente , Remodelação Ventricular/efeitos dos fármacos
15.
J Control Release ; 302: 90-104, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-30946854

RESUMO

Magnetic drug targeting is a method by which magnetic drug carriers in the body are manipulated by external magnetic fields to reach the target area. This method is potentially promising in applications for treatment of diseases like cancers, nervous system diseases, sudden sensorineural hearing loss, and so on, due to the advantages in that it can improve efficacy, reduce drug dosage and side effects. Therefore, it has received extensive attention in recent years. Successful magnetic drug targeting requires a good magnet system to guide the drug carriers to the target site. Up to date there have been many efforts to design the magnet systems for targeted drug delivery. However, there are few comprehensive reviews on these systems. Here we review the progresses made in this field. We summarized the systems already developed or proposed, and categorized them into two groups: static field magnet systems and varying field magnet systems. Based on the requirements for more powerful targeting performance, the prospects and the future research directions in this field are anticipated.


Assuntos
Preparações de Ação Retardada/química , Portadores de Fármacos/química , Imãs/química , Animais , Liberação Controlada de Fármacos , Perda Auditiva/tratamento farmacológico , Humanos , Campos Magnéticos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Doenças do Sistema Nervoso/tratamento farmacológico , Supercondutividade
16.
Crit Rev Microbiol ; 45(3): 278-300, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30985230

RESUMO

Microbially synthesized iron oxide nanoparticles (FeONPs) hold great potential for biomedical, clinical, and environmental applications owing to their several unique features. Biomineralization, a process that exists in almost every living organism playing a significant role in the fabrication of FeONPs through the involvement of 5-100 nm sized protein compartments such as dodecameric (Dps), ferritin, and encapsulin with their diameters 9, 12, and ∼32 nm, respectively. This contribution provides a detailed overview of the green synthesis of FeONPs by microbes and their applications in biomedical and environmental fields. The first part describes our understanding in the biological fabrication of zero-valent FeONPs with special emphasis on ferroxidase (FO) mediated series of steps involving in the translocation, oxidation, nucleation, and storage of iron in Dps, ferritin, and encapsulin protein nano-compartments. Secondly, this review elaborates the significance of biologically synthesized FeONPs in biomedical science for the detection, treatment, and prevention of various diseases. Thirdly, we tried to provide the recent advances of using FeONPs in the environmental process, e.g. detection, degradation, remediation and treatment of toxic pesticides, dyes, metals, and wastewater.


Assuntos
Bactérias/metabolismo , Compostos Férricos/metabolismo , Nanopartículas Metálicas/química , Bactérias/química , Bactérias/genética , Biodegradação Ambiental , Pesquisa Biomédica , Compostos Férricos/química , Humanos , Ferro/química , Ferro/metabolismo , Purificação da Água
17.
Macromol Biosci ; 18(7): e1800041, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29806211

RESUMO

Achilles tendon reconstruction surgery is the primary clinical method for repairing acute Achilles tendon ruptures. However, the efficacy of the postoperative healing process and the recovery of physiological function are inadequate. This study examines the healing mechanism of ruptured rat Achilles tendons seamed with heparin-loaded core-shell fiber sutures fabricated via near-field electrospinning. High-heparin-concentration sutures (PPH3.0) perform better than the low-heparin-concentration sutures and commercial sutures (CSs). The PPH3.0 suture recruits fewer inflammatory cells and shows good histocompatibility in peritoneal implantation experiments. Staining of the Achilles tendon rupture repair zone demonstrates that a high heparin concentration in sutures reduces immune-inflammatory responses. Immunohistochemical analysis reveals that the transforming growth factor-ß staining scores of the PPH3.0 sutures are not significantly different from those of the corresponding control group but are significantly different from those of the CSs and non-heparin-loaded-suture groups. According to vascular endothelial growth factor (VEGF) analysis, the concentration of VEGF in the group treated with the PPH3.0 suture increases by 37.5% compared with that in its control group. No significant difference in tension strength is observed between the PPH3.0 group and healthy Achilles tendons. These findings illustrate that this novel method effectively treats Achilles tendon rupture and promotes healing and regeneration.


Assuntos
Regeneração Tecidual Guiada/métodos , Heparina/farmacologia , Nanofibras/química , Ruptura/terapia , Técnicas de Sutura , Traumatismos dos Tendões/terapia , Tendão do Calcâneo/efeitos dos fármacos , Tendão do Calcâneo/metabolismo , Tendão do Calcâneo/patologia , Animais , Técnicas Eletroquímicas , Expressão Gênica , Heparina/química , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Ruptura/metabolismo , Ruptura/patologia , Suturas , Traumatismos dos Tendões/metabolismo , Traumatismos dos Tendões/patologia , Resistência à Tração/efeitos dos fármacos , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização/efeitos dos fármacos , Cicatrização/fisiologia
18.
J Biomater Appl ; 32(9): 1164-1173, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29471713

RESUMO

As a biodegradable polymer thin film, silk fibroin/chitosan composite film overcomes the defects of pure silk fibroin and chitosan films, respectively, and shows remarkable biocompatibility, appropriate hydrophilicity and mechanical properties. Silk fibroin/chitosan thin film can be used not only as metal implant coating for bone injury repair, but also as tissue engineering scaffold for skin, cornea, adipose, and other soft tissue injury repair. However, the biocompatibility of silk fibroin/chitosan thin film for mesenchymal stem cells, a kind of important seed cell of tissue engineering and regenerative medicine, is rarely reported. In this study, silk fibroin/chitosan film was prepared by solvent casting method, and the rat bone marrow-derived mesenchymal stem cells were cultured on the silk fibroin/chitosan thin film. Osteogenic and adipogenic differentiation of rat bone marrow-derived mesenchymal stem cells were induced, respectively. The proliferation ability, osteogenic and adipogenic differentiation abilities of rat bone marrow-derived mesenchymal stem cells were systematically compared between silk fibroin/chitosan thin film and polystyrene tissue culture plates. The results showed that silk fibroin/chitosan thin film not only provided a comparable environment for the growth and proliferation of rat bone marrow-derived mesenchymal stem cells but also promoted their osteogenic and adipogenic differentiation. This work provided information of rat bone marrow-derived mesenchymal stem cells behavior on silk fibroin/chitosan thin film and extended the application of silk fibroin/chitosan thin film. Based on the results, we suggested that the silk fibroin/chitosan thin film could be a promising material for tissue engineering of bone, cartilage, adipose, and skin.


Assuntos
Adipogenia , Quitosana/química , Fibroínas/química , Células-Tronco Mesenquimais/citologia , Osteogênese , Alicerces Teciduais/química , Animais , Bombyx/química , Proliferação de Células , Células Cultivadas , Masculino , Ratos , Ratos Sprague-Dawley
19.
Biomacromolecules ; 19(1): 62-70, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29168379

RESUMO

We report a simple method of preparing autonomous and rapid self-adhesive hydrogels and their use as building blocks for additive manufacturing of functional tissue scaffolds. Dynamic cross-linking between 2-aminophenylboronic acid-functionalized hyaluronic acid and poly(vinyl alcohol) yields hydrogels that recover their mechanical integrity within 1 min after cutting or shear under both neutral and acidic pH conditions. Incorporation of this hydrogel in an interpenetrating calcium-alginate network results in an interfacially stiffer but still rapidly self-adhesive hydrogel that can be assembled into hollow perfusion channels by simple contact additive manufacturing within minutes. Such channels withstand fluid perfusion while retaining their dimensions and support endothelial cell growth and proliferation, providing a simple and modular route to produce customized cell scaffolds.


Assuntos
Adesivos/química , Hidrogéis/química , Engenharia Tecidual/métodos , Alicerces Teciduais , Ácidos Borônicos/química , Reagentes de Ligações Cruzadas/química , Células Epiteliais/citologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Ácido Hialurônico/química , Concentração de Íons de Hidrogênio , Álcool de Polivinil/química
20.
Int J Biol Macromol ; 105(Pt 1): 584-597, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28802849

RESUMO

The physical and chemical properties of the scaffold are known to play important roles in three-dimensional (3D) cell culture, which always determine the cellular fate or the results of implantation. To control these properties becomes necessary for meeting the requirements of a variety of tissue engineering applications. In this study, a series of silk fibroin/chitosan (SF/CS) scaffolds with tunable properties were prepared using freeze-drying method, and the rat bone marrow-derived mesenchymal stem cells (BM-MSCs) were seeded in these scaffolds to evaluate their availability of use in tissue engineering. The 3D structure, mechanical properties and degradation ability of SF/CS scaffold can be tuned by changing the total concentration of the precursor solution and the blending ratio between SF and CS. BM-MSCs cultured in the SF/CS scaffold exhibited excellent proliferation and multiple morphologies. The induction of osteogenic and adipogenic differentiation of BM-MSCs were successful in this scaffold when cultured in vitro. Subcutaneous implantation of the SF/CS scaffolds did not cause any inflammatory response within four weeks, which revealed good compatibility. Moreover, the implanted scaffold allowed host cells to invade, adhere, grow and form new blood vessels. With these excellent performance, SF/CS scaffold has great potential in preparing implants for tissue engineering applications.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Quitosana/química , Fibroínas/química , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Alicerces Teciduais/química , Adipogenia/efeitos dos fármacos , Animais , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Inflamação/induzido quimicamente , Fenômenos Mecânicos , Nanofibras/química , Osteogênese/efeitos dos fármacos , Porosidade , Ratos , Alicerces Teciduais/efeitos adversos , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA