Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acc Chem Res ; 56(22): 3246-3259, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37910401

RESUMO

ConspectusChain-walking offers extensive opportunities for innovating synthetic methods that involve constructing chemical bonds at unconventional sites. This approach provides previously inaccessible retrosynthetic disconnections in organic synthesis. Through chain-walking, transition metal-catalyzed alkene difunctionalization reactions can take place in a 1,n-addition (n ≠ 2) mode. Unlike classical 1,2-regioselective difunctionalization reactions, there remains a scarcity of reports regarding migratory patterns. Moreover, the range of olefins utilized in these studies is quite limited.About five years ago, our research group embarked on a project aimed at developing valuable migratory difunctionalization reactions of alkenes through chain-walking. Our focus was on carboboration of alkenes utilizing nickel catalysis. The reaction commences with the migratory insertion of an olefin into a Ni-Bpin species. Subsequently, a thermodynamically stable alkyl nickel complex is generated through a chain-walking process. This complex then couples with a carbon-based electrophile, leading to the formation of an alkylboron compound. It is worth highlighting that the success of these transformations relies significantly on the utilization of a bisnitrogen-based ligand and LiOMe as a B2pin2 activator. Synthetically, these migratory carboboration reactions establish a robust platform for the rapid and efficient synthesis of a wide range of structurally diverse organoboron compounds, which are not facially accessed by conventional methods. The incorporation of a versatile boron group introduces a wealth of possibilities for subsequent diversifications, significantly enhancing the value of the resulting products and allowing for the creation of a broader range of valuable derivatives and applications.This Account provides a comprehensive overview of our research efforts and advancements in the field of migratory carboboration of unactivated alkenes using nickel catalysis. We begin by outlining the development of a series of 1,1-regioselective carboboration reactions of terminal alkenes. A significant focus is placed on the initial integration of boronate, which not only triggers the formation of thermodynamically stable metal species but also exerts control over remote stereochemistry in reactions involving substituted methylenecyclohexenes. Continuing our exploration, remarkable success is achieved in 1,3-regio- and cis-stereoselectivity when dealing with cyclic alkenes. Remarkably, nickel chain-walking catalysis enables heterocyclic alkenes to be viable coupling partners within our transformations. Moreover, it grants us the ability to achieve regioselectivity for cyclohexenes that was previously unattainable, thus expanding the horizons of regiochemical control in these reactions. Lastly, we present the evolution of ligand-modulated regiodivergent carboboration of allylarenes. By gaining insights into the underlying mechanisms driving regiodivergence, we lay a strong foundation for tackling challenges related to selecting specific sites in chain-walking reactions, especially when dealing with multiple stable factors. We anticipate that our findings, coupled with the mechanistic insights we've gained, will not only advance the realm of nickel chain-walking catalysis but also contribute to the broader understanding of selectivity control in reactions of this nature. This advancement will also catalyze the synthesis of intricate functional molecules, contributing to the creation of complex and valuable compounds in the realm of organic chemistry.

2.
Nat Commun ; 14(1): 7670, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996492

RESUMO

Organosilicon compounds have shown tremendous potential in drug discovery and their synthesis stimulates wide interest. Multicomponent cross-coupling of alkenes with silicon reagents is used to yield complex silicon-containing compounds from readily accessible feedstock chemicals but the reaction with simple alkenes remains challenging. Here, we report a regioselective silylalkylation of simple alkenes, which is enabled by using a stable Ni(II) salt and an inexpensive trans-1,2-diaminocyclohexane ligand as a catalyst. Remarkably, this reaction can tolerate a broad range of olefins bearing various functional groups, including alcohol, ester, amides and ethers, thus it allows for the efficient and selective assembly of a diverse range of bifunctional organosilicon building blocks from terminal alkenes, alkyl halides and the Suginome reagent. Moreover, an expedient synthetic route toward alpha-Lipoic acid has been developed by this methodology.

3.
J Am Chem Soc ; 145(34): 18722-18730, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37582178

RESUMO

Selective transformation of alkyne triple bonds to double bonds serves as an efficient platform to construct substituted alkenes. While significant advances have been made in its spatiotemporal regulation, achieving a multicomponent enantioselective reaction that requires multifaceted selectivity issues to be overcome is still uncommon. Here, we report an unprecedented asymmetric anti-stereoselective borylcarbofunctionalization of terminal alkynes by nickel catalysis. The utilization of an inexpensive chiral diamine ligand enables the three-component cross-coupling of terminal alkynes, a diboron reagent, and prochiral alkyl electrophiles with high levels of regio-, stereo-, and enantioselectivities. This reaction provides an efficient protocol to access enantioenriched alkenyl esters bearing an α-stereogenic center, is remarkably practical, and has a broad scope and an outstanding functional group compatibility. In addition, the value of this method has been highlighted in a diversity of follow-up stereoretentive derivatizations and the stereoselective concise synthesis of complex drug molecules.

4.
J Am Chem Soc ; 145(25): 13603-13614, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37279247

RESUMO

Chiral boronic esters are a class of versatile building blocks. We describe herein an asymmetric nickel-catalyzed borylative coupling of terminal alkenes with nonactivated alkyl halides. The success of this asymmetric reaction is ascribed to the application of a chiral anionic bisoxazoline ligand. This study provides a three-component strategy to access α- and ß-stereogenic boronic esters from easily accessible starting materials. This protocol is characterized by mild reaction conditions, wide substrate scope and high regio- and enantioselectivity. We also showcase the value of this method in simplifying the synthesis of several drug molecules. Mechanistic studies suggest that the generation of enantioenriched boronic esters bearing an α-stereogenic center results from a stereoconvergent process, while the enantioselectivity-controlling step in the generation of boronic esters with a ß-stereocenter is switched to the olefin migratory insertion step due to coordination of an ester group.

5.
Chem Sci ; 13(5): 1390-1397, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35222923

RESUMO

While chiral allylic organophosphorus compounds are widely utilized in asymmetric catalysis and for accessing bioactive molecules, their synthetic methods are still very limited. We report the development of asymmetric nickel/Brønsted acid dual-catalyzed hydrophosphinylation of 1,3-dienes with phosphine oxides. This reaction is characterized by an inexpensive chiral catalyst, broad substrate scope, and high regio- and enantioselectivity. This study allows the construction of chiral allylic phosphine oxides in a highly economic and efficient manner. Preliminary mechanistic investigations suggest that the 1,3-diene insertion into the chiral Ni-H species is a highly regioselective process and the formation of the chiral C-P bond is an irreversible step.

6.
J Am Chem Soc ; 143(48): 20027-20034, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34734714

RESUMO

Whereas there is a significant interest in the rapid construction of diversely substituted saturated heterocycles, direct and modular access is currently limited to the mono-, 2,3-, or 3,4-substitution pattern. This Communication describes the straightforward and modular construction of 2,4-substituted saturated heterocycles from readily available materials in a highly stereo- and regioselective manner, which sets the stage for numerous readily accessible drug motifs. The strategy relies on chain walking catalysis.

7.
Nat Commun ; 11(1): 417, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964876

RESUMO

Cross-coupling reactions have developed into powerful approaches for carbon-carbon bond formation. In this work, a Ni-catalyzed migratory Suzuki-Miyaura cross-coupling featuring high benzylic or allylic selectivity has been developed. With this method, unactivated alkyl electrophiles and aryl or vinyl boronic acids can be efficiently transferred to diarylalkane or allylbenzene derivatives under mild conditions. Importantly, unactivated alkyl chlorides can also be successfully used as the coupling partners. To demonstrate the applicability of this method, we showcase that this strategy can serve as a platform for the synthesis of terminal, partially deuterium-labeled molecules from readily accessible starting materials. Experimental studies suggest that migratory cross-coupling products are generated from Ni(0/II) catalytic cycle. Theoretical calculations indicate that the chain-walking occurs at a neutral nickel complex rather than a cationic one. In addition, the original-site cross-coupling products can be obtained by alternating the ligand, wherein the formation of the products has been rationalized by a radical chain process.

8.
Chem Sci ; 11(38): 10461-10464, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34094304

RESUMO

The selective cross-coupling of activated electrophiles with unactivated ones has been regarded as a challenging task in cross-electrophile couplings. Herein we describe a migratory cross-coupling strategy, which can overcome this obstacle to access the desired cross-coupling products. Accordingly, a selective migratory cross-coupling of two alkyl electrophiles has been accomplished by nickel catalysis. Remarkably, this alkyl-alkyl cross-coupling reaction provides a platform to prepare 2°-2° carbon-carbon bonds from 1° and 2° carbon coupling partners. Preliminary mechanistic studies suggest that chain-walking occurs at both alkyl halides in this reaction, thus a catalytic cycle with the key step involving two alkylnickel(ii) species is proposed for this transformation.

9.
iScience ; 22: 369-379, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31812807

RESUMO

A novel nickel/Brønsted acid-catalyzed asymmetric hydroamination of acyclic 1,3-dienes has been established. A wide array of primary and secondary amines can be transformed into allylic amines with high yields and high enantioselectivities under very mild conditions. Moreover, our method is compatible with various functional groups and heterocycles, allowing for late-stage functionalization of biologically active complex molecules. Remarkably, this protocol exhibits good chemoselectivity with respect to amines bearing two different nucleophilic sites. Mechanistic studies reveal that the enantioselective carbon-nitrogen bond-forming step is reversible.

10.
Angew Chem Int Ed Engl ; 58(26): 8872-8876, 2019 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-31056806

RESUMO

An unprecedented nickel-catalyzed 1,1-alkylboration of electronically unbiased alkenes has been developed, providing straightforward access to secondary aliphatic boronic esters from readily available materials under very mild reaction conditions. The regioselectivity of this reaction is governed by a unique pyridyl carboxamide ligated catalyst, rather than the substrates. Moreover, this transformation shows excellent chemo- and regio-selectivity and remarkably good functional-group tolerance. We also demonstrate that under balloon pressure, ethylene can also be utilized as a substrate. Additionally, competence experiments indicate that selective bond formation is favored at the α-position of boron and preliminary mechanistic studies indicate that the key step in this three-component reaction involves a 1,2-nickel migration.

11.
Org Lett ; 21(11): 3968-3971, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31074286

RESUMO

A novel nickel-catalyzed 1,2-arylboration of vinylarenes is reported. A variety of 2-boryl-1,1-diarylalkanes, which constitute a class of significant pharmacophores, are efficiently prepared from readily available olefins and aryl halides in the presence of bis(pinacolato)diboron under mild reaction conditions. The success of this three-component cascade is mainly attributed to the redox-active nitrogen-based ligand. Moreover, this method exhibits good functional group tolerance and excellent chemo- and stereoselectivity.

12.
Angew Chem Int Ed Engl ; 58(14): 4612-4616, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30740847

RESUMO

An unprecedented arylboration of unactivated terminal alkenes, featuring 1,n-regioselectivity, has been achieved by nickel catalysis. The nitrogen-based ligand plays an essential role in the success of this three-component reaction. This transformation displays good regioselectivity and excellent functional-group tolerance. In addition, the incorporation of a boron group into the products provides substantial opportunities for further transformations. Also demonstrated is that the products can be readily transformed into pharmaceutically relevant molecules. Unexpectedly, preliminary mechanistic studies indicate that although the metal migration favors the α-position of boron, selective and decisive bond formation is favored at the benzylic position.

13.
Org Lett ; 20(7): 1880-1883, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29561162

RESUMO

A novel method to access 1,1-diarylalkanes from readily available, nonactivated alkyl bromides and aryl bromides via visible-light-driven nickel and iridium dual catalysis, wherein diisopropylamine ( iPr2NH) is used as the terminal stoichiometric reductant, is reported. Both primary and secondary alkyl bromides can be successfully transformed into the migratory benzylic arylation products with good selectivity. Additionally, this method showcases tolerance toward a wide array of functional groups and the presence of bases.

14.
Chem Sci ; 7(2): 1076-1081, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29081943

RESUMO

While nickel catalysts have previously been shown to activate even the least reactive Csp2-O bonds, i.e. aryl ethers, in the context of C-C bond formation, little is known about the reactivity limits and molecular requirements for the introduction of valuable functional groups under homogeneous nickel catalysis. We identified that due to the high reactivity of Ni-catalysts, they are also prone to react with existing or installed functional groups, which ultimately causes catalyst deactivation. The scope of the Ni-catalyzed coupling protocol will therefore be dictated by the reactivity of the functional groups towards the catalyst. Herein, we showed that the application of computational tools allowed the identification of matching functional groups in terms of suitable leaving groups and tolerated functional groups. This allowed for the development of the first efficient protocol to trifluoromethylthiolate Csp2-O bonds, giving the mild and operationally simple C-SCF3 coupling of a range of aryl, vinyl triflates and nonaflates. The novel methodology was also applied to biologically active and pharmaceutical relevant targets, showcasing its robustness and wide applicability.

15.
J Am Chem Soc ; 137(12): 4164-72, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25790253

RESUMO

A catalytic protocol to convert aryl and heteroaryl chlorides to the corresponding trifluoromethyl sulfides is reported herein. It relies on a relatively inexpensive Ni(cod)2/dppf (cod = 1,5-cyclooctadiene; dppf = 1,1'-bis(diphenylphosphino)ferrocene) catalyst system and the readily accessible coupling reagent (Me4N)SCF3. Our computational and experimental mechanistic data are consistent with a Ni(0)/Ni(II) cycle and inconsistent with Ni(I) as the reactive species. The relevant intermediates were prepared, characterized by X-ray crystallography, and tested for their catalytic competence. This revealed that a monomeric tricoordinate Ni(I) complex is favored for dppf and Cl whose role was unambiguously assigned as being an off-cycle catalyst deactivation product. Only bidentate ligands with wide bite angles (e.g., dppf) are effective. These bulky ligands render the catalyst resting state as [(P-P)Ni(cod)]. The latter is more reactive than Ni(P-P)2, which was found to be the resting state for ligands with smaller bite angles and suffers from an initial high-energy dissociation of one ligand prior to oxidative addition, rendering the system unreactive. The key to effective catalysis is hence the presence of a labile auxiliary ligand in the catalyst resting state. For more challenging substrates, high conversions were achieved via the employment of MeCN as a traceless additive. Mechanistic data suggest that its beneficial role lies in decreasing the energetic span, therefore accelerating product formation. Finally, the methodology has been applied to synthetic targets of pharmaceutical relevance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA