Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Basic Res Cardiol ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963562

RESUMO

Understanding the mechanisms underlying vascular regeneration in the heart is crucial for developing novel therapeutic strategies for myocardial ischemia. This study investigates the contribution of bone marrow-derived cells to endothelial cell populations in the heart, and their role in cardiac function and coronary circulation following repetitive ischemia (RI). Chimeric rats were created by transplanting BM cells from GFP female rats into irradiated male recipients. After engraftment chimeras were subjected to RI for 17 days. Vascular growth was assessed from recovery of cardiac function and increases in myocardial blood flow during LAD occlusion. After sorting GFP+ BM cells from heart and bone of Control and RI rats, single-cell RNA sequencing was implemented to determine the fate of BM cells. Our in vivo RI model demonstrated an improvement in cardiac function and myocardial blood flow after 17 days of RI with increased capillary density in the rats subjected to RI compared to Controls. Single-cell RNA sequencing of bone marrow cells isolated from rats' hearts identified distinct endothelial cell (EC) subpopulations. These ECs exhibited heterogeneous gene expression profiles and were enriched for markers of capillary, artery, lymphatic, venous, and immune ECs. Furthermore, BM-derived ECs in the RI group showed an angiogenic profile, characterized by upregulated genes associated with blood vessel development and angiogenesis. This study elucidates the heterogeneity of bone marrow-derived endothelial cells in the heart and their response to repetitive ischemia, laying the groundwork for targeting specific subpopulations for therapeutic angiogenesis in myocardial ischemia.

2.
Biochem Pharmacol ; : 116241, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38697309

RESUMO

Fatty acid omega hydroxylase P450s consist of enzymes that hydroxylate various chain-length saturated and unsaturated fatty acids (FAs) and bioactive eicosanoid lipids. The human cytochrome P450 gene 4 family (CYP4) consists of 12 members that are associated with several human diseases. However, their role in the progression of metabolic dysfunction-associated fatty liver disease (MASLD) remains largely unknown. It has long been thought that the induction of CYP4 family P450 during fasting and starvation prevents FA-related lipotoxicity through FA metabolism to dicarboxylic acids that are chain-shortened in peroxisomes and then transported to the mitochondria for complete oxidation. Several studies have revealed that peroxisome succinate transported to the mitochondria is used for gluconeogenesis during fasting and starvation, and recent evidence suggests that peroxisome acetate can be utilized for lipogenesis and lipid droplet formation as well as epigenetic modification of gene transcription. In addition, omega hydroxylation of the bioactive eicosanoid arachidonic acid to 20-Hydroxyeicosatetraenoic acid (20-HETE) is essential for activating the GPR75 receptor, leading to vasoconstriction and cell proliferation. Several mouse models of diet-induced MASLD have revealed the induction of selective CYP4A members and the suppression of CYP4F during steatosis and steatohepatitis, suggesting a critical metabolic role in the progression of fatty liver disease. Thus, to further investigate the functional roles of CYP4 genes, we analyzed the differential gene expression of 12 members of CYP4 gene family in datasets from the Gene Expression Omnibus (GEO) from patients with steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. We also observed the differential expression of various CYP4 genes in the progression of MASLD, indicating that different CYP4 members may have unique functional roles in the metabolism of specific FAs and eicosanoids at various stages of fatty liver disease. These results suggest that targeting selective members of the CYP4A family is a viable therapeutic approach for treating and managing MASLD.

3.
Cells ; 12(15)2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37566087

RESUMO

Histone deacetylase Sirtuin 6 (SIRT6) regulates many biological processes. SIRT6 is known to regulate hepatic lipid metabolism and inhibit the development of nonalcoholic fatty liver disease (NAFLD). We aimed to investigate the role of hepatocyte SIRT6 in the development of atherosclerosis and further characterize the mechanism underlying SIRT6's effect on NAFLD. Ldlr-/- mice overexpressing or lacking hepatocyte SIRT6 were fed a Western diet for 16 weeks. The role of hepatic SIRT6 in the development of nonalcoholic steatohepatitis (NASH), atherosclerosis, and obesity was investigated. We also investigated whether p53 participates in the pathogenesis of NAFLD in mice overexpressing hepatic SIRT6. Our data show that loss of hepatocyte SIRT6 aggravated the development of NAFLD, atherosclerosis, and obesity in Ldlr-/- mice, whereas adeno-associated virus (AAV)-mediated overexpression of human SIRT6 in the liver had opposite effects. Mechanistically, hepatocyte SIRT6 likely inhibited the development of NAFLD by inhibiting lipogenesis, lipid droplet formation, and p53 signaling. Hepatocyte SIRT6 also likely inhibited the development of atherosclerosis by inhibiting intestinal lipid absorption and hepatic VLDL secretion. Hepatic SIRT6 also increased energy expenditure. In conclusion, our data indicate that hepatocyte SIRT6 protects against atherosclerosis, NAFLD, and obesity by regulating lipid metabolism in the liver and intestine.


Assuntos
Aterosclerose , Hepatopatia Gordurosa não Alcoólica , Sirtuínas , Humanos , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Hepatócitos/metabolismo , Obesidade/complicações , Sirtuínas/genética , Sirtuínas/metabolismo , Lipídeos , Homeostase , Aterosclerose/metabolismo
4.
Cells ; 12(2)2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36672176

RESUMO

Many clinical trials have attempted to use stem cells to treat ischemic heart diseases (IHD), but the benefits have been modest. Though coronary collaterals can be a "natural bypass" for IHD patients, the regulation of coronary collateral growth (CCG) and the role of endogenous stem cells in CCG are not fully understood. In this study, we used a bone marrow transplantation scheme to study the role of bone marrow stem cells (BMSCs) in a rat model of CCG. Transgenic GFP rats were used to trace BMSCs after transplantation; GFP bone marrow was harvested or sorted for bone marrow transplantation. After recovering from transplantation, the recipient rats underwent 10 days of repetitive ischemia (RI), with echocardiography before and after RI, to measure cardiac function and myocardial blood flow. At the end of RI, the rats were sacrificed for the collection of bone marrow for flow cytometry or heart tissue for imaging analysis. Our study shows that upon RI stimulation, BMSCs homed to the recipient rat hearts' collateral-dependent zone (CZ), proliferated, differentiated into endothelial cells, and engrafted in the vascular wall for collateral growth. These RI-induced collaterals improved coronary blood flow and cardiac function in the recipients' hearts during ischemia. Depletion of donor CD34+ BMSCs led to impaired CCG in the recipient rats, indicating that this cell population is essential to the process. Overall, these results show that BMSCs contribute to CCG and suggest that regulation of the function of BMSCs to promote CCG might be a potential therapeutic approach for IHD.


Assuntos
Circulação Colateral , Isquemia Miocárdica , Ratos , Animais , Circulação Colateral/fisiologia , Medula Óssea , Células Endoteliais , Isquemia Miocárdica/terapia , Isquemia , Células-Tronco
6.
Diabetes ; 70(11): 2506-2517, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34475098

RESUMO

Activating transcription factor 3 (ATF3) has been shown to play an important role in HDL metabolism; yet, the role of hepatocytic ATF3 in the development of steatohepatitis remains elusive. Here we show that adenoassociated virus-mediated overexpression of human ATF3 in hepatocytes prevents diet-induced steatohepatitis in C57BL/6 mice and reverses steatohepatitis in db/db mice. Conversely, global or hepatocyte-specific loss of ATF3 aggravates diet-induced steatohepatitis. Mechanistically, hepatocytic ATF3 induces hepatic lipolysis and fatty acid oxidation and inhibits inflammation and apoptosis. We further show that hepatocyte nuclear factor 4α (HNF4α) is required for ATF3 to improve steatohepatitis. Thus, the current study indicates that ATF3 protects against steatohepatitis through, at least in part, hepatic HNF4α. Targeting hepatic ATF3 may be useful for treatment of steatohepatitis.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fator 3 Ativador da Transcrição/genética , Animais , Dieta Ocidental , Regulação da Expressão Gênica/fisiologia , Células Estreladas do Fígado , Fator 4 Nuclear de Hepatócito/genética , Hepatócitos/metabolismo , Humanos , Células de Kupffer/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
7.
Angiogenesis ; 24(3): 647-656, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33656628

RESUMO

Transient receptor potential vanilloid 4 (TRPV4) is a ubiquitously expressed polymodally activated ion channel. TRPV4 has been implicated in tumor progression; however, the cell-specific role of TRPV4 in tumor growth, angiogenesis, and metastasis is unknown. Here, we generated endothelial-specific TRPV4 knockout (TRPV4ECKO) mice by crossing TRPV4lox/lox mice with Tie2-Cre mice. Tumor growth and metastasis were significantly increased in a syngeneic Lewis lung carcinoma tumor model of TRPV4ECKO mice compared to TRPV4lox/lox mice. Multiphoton microscopy, dextran leakage, and immunohistochemical analysis revealed increased tumor angiogenesis and metastasis that were correlated with aberrant leaky vessels (increased width and reduced pericyte and VE-cadherin coverage). Mechanistically, increases in VEGFR2, p-ERK, and MMP-9 expression and DQ gelatinase activity were observed in the TRPV4ECKO mouse tumors. Our results demonstrated that endothelial TRPV4 is a critical modulator of vascular integrity and tumor angiogenesis and that deletion of TRPV4 promotes tumor angiogenesis, growth, and metastasis.


Assuntos
Carcinoma Pulmonar de Lewis/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/metabolismo , Neovascularização Patológica/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/patologia , Camundongos , Camundongos Knockout , Metástase Neoplásica , Proteínas de Neoplasias/genética , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Canais de Cátion TRPV/genética
8.
Nat Metab ; 3(1): 59-74, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33462514

RESUMO

Activating transcription factor (ATF)3 is known to have an anti-inflammatory function, yet the role of hepatic ATF3 in lipoprotein metabolism or atherosclerosis remains unknown. Here we show that overexpression of human ATF3 in hepatocytes reduces the development of atherosclerosis in Western-diet-fed Ldlr-/- or Apoe-/- mice, whereas hepatocyte-specific ablation of Atf3 has the opposite effect. We further show that hepatic ATF3 expression is inhibited by hydrocortisone. Mechanistically, hepatocyte ATF3 enhances high-density lipoprotein (HDL) uptake, inhibits intestinal fat and cholesterol absorption and promotes macrophage reverse cholesterol transport by inducing scavenger receptor group B type 1 (SR-BI) and repressing cholesterol 12α-hydroxylase (CYP8B1) in the liver through its interaction with p53 and hepatocyte nuclear factor 4α, respectively. Our data demonstrate that hepatocyte ATF3 is a key regulator of HDL and bile acid metabolism and atherosclerosis.


Assuntos
Fator 3 Ativador da Transcrição/fisiologia , Aterosclerose/prevenção & controle , Ácidos e Sais Biliares/metabolismo , Hepatócitos/metabolismo , Lipoproteínas HDL/metabolismo , Animais , Apolipoproteínas E/genética , Colesterol na Dieta/metabolismo , Gorduras na Dieta/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Fator 4 Nuclear de Hepatócito/metabolismo , Humanos , Hidrocortisona/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de LDL/genética , Receptores Depuradores Classe B/metabolismo , Esteroide 12-alfa-Hidroxilase/metabolismo , Proteína Supressora de Tumor p53/metabolismo
9.
Hepatology ; 73(6): 2251-2265, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33098092

RESUMO

BACKGROUND AND AIMS: Hepatocyte nuclear factor 4α (HNF4α) is highly enriched in the liver, but its role in the progression of nonalcoholic liver steatosis (NAFL) to NASH has not been elucidated. In this study, we investigated the effect of gain or loss of HNF4α function on the development and progression of NAFLD in mice. APPROACH AND RESULTS: Overexpression of human HNF4α protected against high-fat/cholesterol/fructose (HFCF) diet-induced steatohepatitis, whereas loss of Hnf4α had opposite effects. HNF4α prevented hepatic triglyceride accumulation by promoting hepatic triglyceride lipolysis, fatty acid oxidation, and VLDL secretion. Furthermore, HNF4α suppressed the progression of NAFL to NASH. Overexpression of human HNF4α inhibited HFCF diet-induced steatohepatitis in control mice but not in hepatocyte-specific p53-/- mice. In HFCF diet-fed mice lacking hepatic Hnf4α, recapitulation of hepatic expression of HNF4α targets cholesterol 7α-hydroxylase and sterol 12α-hydroxylase and normalized hepatic triglyceride levels and attenuated steatohepatitis. CONCLUSIONS: The current study indicates that HNF4α protects against diet-induced development and progression of NAFLD by coordinating the regulation of lipolytic, p53, and bile acid signaling pathways. Targeting hepatic HNF4α may be useful for treatment of NASH.


Assuntos
Ácidos e Sais Biliares/metabolismo , Dieta Hiperlipídica , Fator 4 Nuclear de Hepatócito/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Proteína Supressora de Tumor p53/metabolismo , Animais , Ácido Quenodesoxicólico/análogos & derivados , Ácido Quenodesoxicólico/farmacologia , Colesterol 7-alfa-Hidroxilase/metabolismo , Fator 4 Nuclear de Hepatócito/genética , Hepatócitos/patologia , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Transdução de Sinais , Esteroide 12-alfa-Hidroxilase/metabolismo , Triglicerídeos/sangue , Proteína Supressora de Tumor p53/genética
10.
Am J Physiol Gastrointest Liver Physiol ; 320(2): G166-G174, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33325808

RESUMO

Human carboxylesterase 2 (CES2) has triacylglycerol hydrolase (TGH) activities and plays an important role in lipolysis. In this study, we aim to determine the role of human CES2 in the progression or reversal of steatohepatitis in diet-induced or genetically obese mice. High-fat/high-cholesterol/high-fructose (HFCF) diet-fed C57BL/6 mice or db/db mice were intravenously injected with an adeno-associated virus expressing human CES2 under the control of an albumin promoter. Human CES2 protected against HFCF diet-induced nonalcoholic fatty liver disease (NAFLD) in C57BL/6J mice and reversed steatohepatitis in db/db mice. Human CES2 also improved glucose tolerance and insulin sensitivity. Mechanistically, human CES2 reduced hepatic triglyceride (T) and free fatty acid (FFA) levels by inducing lipolysis and fatty acid oxidation and inhibiting lipogenesis via suppression of sterol regulatory element-binding protein 1. Furthermore, human CES2 overexpression improved mitochondrial respiration and glycolytic function, and inhibited gluconeogenesis, lipid peroxidation, apoptosis, and inflammation. Our data suggest that hepatocyte-specific expression of human CES2 prevents and reverses steatohepatitis. Targeting hepatic CES2 may be an attractive strategy for treatment of NAFLD.NEW & NOTEWORTHY Human CES2 attenuates high-fat/cholesterol/fructose diet-induced steatohepatitis and reverses steatohepatitis in db/db mice. Mechanistically, human CES2 induces lipolysis, fatty acid and glucose oxidation, and inhibits hepatic glucose production, inflammation, lipid oxidation, and apoptosis. Our data suggest that human CES2 may be targeted for treatment of non-alcoholic steatohepatitis (NASH).


Assuntos
Carboxilesterase/metabolismo , Hepatócitos/enzimologia , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/terapia , Ácido 3-Hidroxibutírico/sangue , Ácido 3-Hidroxibutírico/metabolismo , Alanina Transaminase/sangue , Alanina Transaminase/metabolismo , Animais , Apoptose/fisiologia , Aspartato Aminotransferases/sangue , Aspartato Aminotransferases/metabolismo , Glicemia , Carboxilesterase/genética , Dieta/efeitos adversos , Hidroxiprolina/sangue , Hidroxiprolina/metabolismo , Metabolismo dos Lipídeos , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Obesidade/induzido quimicamente , Espécies Reativas de Oxigênio/metabolismo
11.
Mol Ther ; 28(1): 202-216, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31604677

RESUMO

Macrophages play a crucial role in the pathogenesis of atherosclerosis, but the molecular mechanisms remain poorly understood. Here we show that microRNA-34a (miR-34a) is a key regulator of macrophage cholesterol efflux and reverse cholesterol transport by modulating ATP-binding cassette transporters ATP-binding cassette subfamily A member 1 (ABCA1) and ATP-binding cassette subfamily G member 1 (ABCG1). miR-34a also regulates M1 and M2 macrophage polarization via liver X receptor α. Furthermore, global loss of miR-34a reduces intestinal cholesterol or fat absorption by inhibiting cytochrome P450 enzymes CYP7A1 and sterol 12α-hydroxylase (CYP8B1). Consistent with these findings, macrophage-selective or global ablation of miR-34a markedly inhibits the development of atherosclerosis. Finally, therapeutic inhibition of miR-34a promotes atherosclerosis regression and reverses diet-induced metabolic disorders. Our studies outline a central role of miR-34a in regulating macrophage cholesterol efflux, inflammation, and atherosclerosis, suggesting that miR-34a is a promising target for treatment of cardiometabolic diseases.


Assuntos
Aterosclerose/metabolismo , Colesterol/metabolismo , Macrófagos/metabolismo , MicroRNAs/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Polaridade Celular/genética , Modelos Animais de Doenças , Células Hep G2 , Humanos , Receptores X do Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , MicroRNAs/genética , Células RAW 264.7 , Células THP-1 , Transfecção
12.
Arterioscler Thromb Vasc Biol ; 39(8): 1574-1587, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31291759

RESUMO

OBJECTIVE: To determine the role of hepatic FOXA3 (forkhead box A3) in lipid metabolism and atherosclerosis. Approach and Results: Hepatic FOXA3 expression was reduced in diabetic or high fat diet-fed mice or patients with nonalcoholic steatohepatitis. We then used adenoviruses to overexpress or knock down hepatic FOXA3 expression. Overexpression of FOXA3 in the liver increased hepatic ApoA-I (apolipoprotein A-I) expression, plasma HDL-C (high-density lipoprotein cholesterol) level, macrophage cholesterol efflux, and macrophage reverse cholesterol transport. In contrast, knockdown of hepatic FOXA3 expression had opposite effects. We further showed that FOXA3 directly bound to the promoter of the Apoa1 gene to regulate its transcription. Finally, AAV8 (adeno-associated virus serotype 8)-mediated overexpression of human FOXA3 in the hepatocytes of Apoe-/- (apolipoprotein E-deficient) mice raised plasma HDL-C levels and significantly reduced atherosclerotic lesions. CONCLUSIONS: Hepatocyte FOXA3 protects against atherosclerosis by inducing ApoA-I and macrophage reverse cholesterol transport.


Assuntos
Apolipoproteína A-I/sangue , Aterosclerose/etiologia , Colesterol/metabolismo , Fator 3-gama Nuclear de Hepatócito/fisiologia , Fígado/metabolismo , Animais , Transporte Biológico , HDL-Colesterol/sangue , Feminino , Células Hep G2 , Humanos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
13.
Mol Metab ; 9: 131-140, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29361497

RESUMO

OBJECTIVES: Activation of the bile acid (BA) receptors farnesoid X receptor (FXR) or G protein-coupled bile acid receptor (GPBAR1; TGR5) improves metabolic homeostasis. In this study, we aim to determine the impact of pharmacological activation of bile acid receptors by INT-767 on reversal of diet-induced metabolic disorders, and the relative contribution of FXR vs. TGR5 to INT-767's effects on metabolic parameters. METHODS: Wild-type (WT), Tgr5-/-, Fxr-/-, Apoe-/- and Shp-/- mice were used to investigate whether and how BA receptor activation by INT-767, a semisynthetic agonist for both FXR and TGR5, could reverse diet-induced metabolic disorders. RESULTS: INT-767 reversed HFD-induced obesity dependent on activation of both TGR5 and FXR and also reversed the development of atherosclerosis and non-alcoholic fatty liver disease (NAFLD). Mechanistically, INT-767 improved hypercholesterolemia by activation of FXR and induced thermogenic genes via activation of TGR5 and/or FXR. Furthermore, INT-767 inhibited several lipogenic genes and de novo lipogenesis in the liver via activation of FXR. We identified peroxisome proliferation-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (CEBPα) as novel FXR-regulated genes. FXR inhibited PPARγ expression by inducing small heterodimer partner (SHP) whereas the inhibition of CEBPα by FXR was SHP-independent. CONCLUSIONS: BA receptor activation can reverse obesity, NAFLD, and atherosclerosis by specific activation of FXR or TGR5. Our data suggest that, compared to activation of FXR or TGR5 only, dual activation of both FXR and TGR5 is a more attractive strategy for treatment of common metabolic disorders.


Assuntos
Ácidos e Sais Biliares/uso terapêutico , Hipercolesterolemia/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Obesidade/tratamento farmacológico , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Acoplados a Proteínas G/agonistas , Animais , Ácidos e Sais Biliares/farmacologia , Dieta Hiperlipídica/efeitos adversos , Células Hep G2 , Humanos , Hipercolesterolemia/etiologia , Hipercolesterolemia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/etiologia , Obesidade/metabolismo
14.
Sci Rep ; 7(1): 17845, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29259301

RESUMO

Atherosclerotic cardiovascular disease is a leading cause of death in the western world. Increased plasma triglyceride and cholesterol levels are major risk factors for this disease. Carboxylesterase 1 (Ces1/Ces1g) has been shown to play a role in metabolic control. So far, the role of mouse Ces1/Ces1g deficiency in atherosclerosis is not elucidated. We generated Ces1/Ces1g -/- mice. Compared to wild-type mice, Ces1/Ces1g -/- mice had reduced plasma cholesterol levels. We then generated Ces1g -/- Ldlr -/- double knockout (DKO) mice, which were fed a Western diet for 16 weeks. Compared to Ldlr -/- mice, DKO mice displayed decreased plasma cholesterol and TG levels and reduced atherosclerotic lesions. Interestingly, knockdown of hepatic Ces1/Ces1g in Apoe -/- mice resulted in hyperlipidemia and exacerbated Western diet-induced atherogenesis. Mechanistically, global inactivation of Ces1/Ces1g inhibited intestinal cholesterol and fat absorption and Niemann-Pick C1 like 1 expression, and increased macrophage cholesterol efflux by inducing ATP-binding cassette subfamily A member 1 (ABCA1) and ABCG1. Ces1/Ces1g ablation also promoted M2 macrophage polarization and induced hepatic cholesterol 7α-hydroxylase and sterol 12α-hydroxylase expression. In conclusion, global loss of Ces1/Ces1g protects against the development of atherosclerosis by inhibiting intestinal cholesterol and triglyceride absorption and promoting macrophage cholesterol efflux.


Assuntos
Aterosclerose/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Aterosclerose/sangue , Colesterol/sangue , Colesterol/metabolismo , Modelos Animais de Doenças , Hiperlipidemias/sangue , Hiperlipidemias/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/patologia , Fígado/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Triglicerídeos/sangue
15.
Microcirculation ; 24(4)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28504408

RESUMO

The connection between metabolism and flow in the heart, metabolic dilation, is essential for cardiac function. We recently found redox-sensitive Kv1.5 channels play a role in coronary metabolic dilation; however, more than one ion channel likely plays a role in this process as animals null for these channels still showed limited coronary metabolic dilation. Accordingly, we examined the role of another Kv1 family channel, the energetically linked Kv1.3 channel, in coronary metabolic dilation. We measured myocardial blood flow (contrast echocardiography) during norepinephrine-induced increases in cardiac work (heart rate x mean arterial pressure) in WT, WT mice given correolide (preferential Kv1.3 antagonist), and Kv1.3-null mice (Kv1.3-/- ). We also measured relaxation of isolated small arteries mounted in a myograph. During increased cardiac work, myocardial blood flow was attenuated in Kv1.3-/- and in correolide-treated mice. In isolated vessels from Kv1.3-/- mice, relaxation to H2 O2 was impaired (vs WT), but responses to adenosine and acetylcholine were equivalent to WT. Correolide reduced dilation to adenosine and acetylcholine in WT and Kv1.3-/- , but had no effect on H2 O2 -dependent dilation in vessels from Kv1.3-/- mice. We conclude that Kv1.3 channels participate in the connection between myocardial blood flow and cardiac metabolism.


Assuntos
Circulação Coronária , Canal de Potássio Kv1.3/fisiologia , Miocárdio/metabolismo , Animais , Circulação Coronária/efeitos dos fármacos , Camundongos , Bloqueadores dos Canais de Potássio/farmacologia , Fluxo Sanguíneo Regional/efeitos dos fármacos , Triterpenos/farmacologia , Vasodilatação/efeitos dos fármacos
16.
Basic Res Cardiol ; 112(4): 41, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28540527

RESUMO

Ischemic heart disease is still the leading cause of death even with the advancement of pharmaceutical therapies and surgical procedures. Early vascularization in the ischemic heart is critical for a better outcome. Although stem cell therapy has great potential for cardiovascular regeneration, the ideal cell type and delivery method of cells have not been resolved. We tested a new approach of stem cell therapy by delivery of induced vascular progenitor cells (iVPCs) grown on polymer micro-bundle scaffolds in a rat model of myocardial infarction. iVPCs partially reprogrammed from vascular endothelial cells (ECs) had potent angiogenic potential and were able to simultaneously differentiate into vascular smooth muscle cells (SMCs) and ECs in 2D culture. Under hypoxic conditions, iVPCs also secreted angiogenic cytokines such as vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) as measured by enzyme-linked immunosorbent assay (ELISA). A longitudinal micro-scaffold made from poly(lactic-co-glycolic acid) was sufficient for the growth and delivery of iVPCs. Co-cultured ECs and SMCs aligned well on the micro-bundle scaffold similarly as in the vessels. 3D cell/polymer micro-bundles formed by iVPCs and micro-scaffolds were transplanted into the ischemic myocardium in a rat model of myocardial infarction (MI) with ligation of the left anterior descending artery. Our in vivo data showed that iVPCs on the micro-bundle scaffold had higher survival, and better retention and engraftment in the myocardium than free iVPCs. iVPCs on the micro-bundles promoted better cardiomyocyte survival than free iVPCs. Moreover, iVPCs and iVPC/polymer micro-bundles treatment improved cardiac function (ejection fraction and fractional shortening, endocardial systolic volume) measured by echocardiography, increased vessel density, and decreased infarction size [endocardial and epicardial infarct (scar) length] better than untreated controls at 8 weeks after MI. We conclude that iVPCs grown on a polymer micro-bundle scaffold are new promising approach for cell-based therapy designed for cardiovascular regeneration in ischemic heart disease.


Assuntos
Células Progenitoras Endoteliais/transplante , Ácido Láctico/química , Músculo Liso Vascular/transplante , Infarto do Miocárdio/cirurgia , Miocárdio/patologia , Miócitos de Músculo Liso/transplante , Neovascularização Fisiológica , Ácido Poliglicólico/química , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Células Progenitoras Endoteliais/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Músculo Liso Vascular/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Miócitos de Músculo Liso/metabolismo , Comunicação Parácrina , Fenótipo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos Sprague-Dawley , Transdução de Sinais , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Remodelação Ventricular
17.
Circ Res ; 117(7): 612-621, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26224794

RESUMO

RATIONALE: In the working heart, coronary blood flow is linked to the production of metabolites, which modulate tone of smooth muscle in a redox-dependent manner. Voltage-gated potassium channels (Kv), which play a role in controlling membrane potential in vascular smooth muscle, have certain members that are redox-sensitive. OBJECTIVE: To determine the role of redox-sensitive Kv1.5 channels in coronary metabolic flow regulation. METHODS AND RESULTS: In mice (wild-type [WT], Kv1.5 null [Kv1.5(-/-)], and Kv1.5(-/-) and WT with inducible, smooth muscle-specific expression of Kv1.5 channels), we measured mean arterial pressure, myocardial blood flow, myocardial tissue oxygen tension, and ejection fraction before and after inducing cardiac stress with norepinephrine. Cardiac work was estimated as the product of mean arterial pressure and heart rate. Isolated arteries were studied to establish whether genetic alterations modified vascular reactivity. Despite higher levels of cardiac work in the Kv1.5(-/-) mice (versus WT mice at baseline and all doses of norepinephrine), myocardial blood flow was lower in Kv1.5(-/-) mice than in WT mice. At high levels of cardiac work, tissue oxygen tension dropped significantly along with ejection fraction. Expression of Kv1.5 channels in smooth muscle in the null background rescued this phenotype of impaired metabolic dilation. In isolated vessels from Kv1.5(-/-) mice, relaxation to H2O2 was impaired, but responses to adenosine and acetylcholine were normal compared with those from WT mice. CONCLUSIONS: Kv1.5 channels in vascular smooth muscle play a critical role in coupling myocardial blood flow to cardiac metabolism. Absence of these channels disassociates metabolism from flow, resulting in cardiac pump dysfunction and tissue hypoxia.


Assuntos
Circulação Coronária/fisiologia , Vasos Coronários/metabolismo , Canal de Potássio Kv1.5/fisiologia , Músculo Liso Vascular/metabolismo , Vasodilatação/fisiologia , Animais , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos
18.
Nat Commun ; 6: 7466, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26100857

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, but its underlying mechanism is poorly understood. Here we show that hepatocyte nuclear factor 4α (HNF4α), a liver-enriched nuclear hormone receptor, is markedly inhibited, whereas miR-34a is highly induced in patients with non-alcoholic steatohepatitis, diabetic mice and mice fed a high-fat diet. miR-34a is essential for HNF4α expression and regulates triglyceride accumulation in human and murine hepatocytes. miR-34a inhibits very low-density lipoprotein secretion and promotes liver steatosis and hypolipidemia in an HNF4α-dependent manner. As a result, increased miR-34a or reduced HNF4α expression in the liver attenuates the development of atherosclerosis in Apoe(-/-) or Ldlr(-/-) mice. These data indicate that the miR-34a-HNF4α pathway is activated under common conditions of metabolic stress and may have a role in the pathogenesis of NAFLD and in regulating plasma lipoprotein metabolism. Targeting this pathway may represent a novel approach for the treatment of NAFLD.


Assuntos
Fator 4 Nuclear de Hepatócito/genética , Metabolismo dos Lipídeos/genética , MicroRNAs/genética , Hepatopatia Gordurosa não Alcoólica/genética , Estresse Fisiológico/genética , Triglicerídeos/metabolismo , Animais , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Células Hep G2 , Fator 4 Nuclear de Hepatócito/metabolismo , Humanos , Lipoproteínas/metabolismo , Fígado/metabolismo , Camundongos Knockout , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores de LDL/genética
19.
Basic Res Cardiol ; 110(2): 19, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25725808

RESUMO

Ischemic heart disease (IHD) is a leading cause of death worldwide, and regenerative therapies through exogenous stem cell delivery hold promising potential. One limitation of such therapies is the vulnerability of stem cells to the oxidative environment associated with IHD. Accordingly, manipulation of stem cell mitochondrial metabolism may be an effective strategy to improve survival of stem cells under oxidative stress. MitoNEET is a redox-sensitive, mitochondrial target of thiazolidinediones (TZDs), and influences cellular oxidative capacity. Pharmacological targeting of mitoNEET with the novel TZD, mitoNEET Ligand-1 (NL-1), improved cardiac stem cell (CSC) survival compared to vehicle (0.1% DMSO) during in vitro oxidative stress (H2O2). 10 µM NL-1 also reduced CSC maximal oxygen consumption rate (OCR) compared to vehicle. Following treatment with dexamethasone, CSC maximal OCR increased compared to baseline, but NL-1 prevented this effect. Smooth muscle α-actin expression increased significantly in CSC following differentiation compared to baseline, irrespective of NL-1 treatment. When CSCs were treated with glucose oxidase for 7 days, NL-1 significantly improved cell survival compared to vehicle (trypan blue exclusion). NL-1 treatment of cells isolated from mitoNEET knockout mice did not increase CSC survival with H2O2 treatment. Following intramyocardial injection of CSCs into Zucker obese fatty rats, NL-1 significantly improved CSC survival after 24 h, but not after 10 days. These data suggest that pharmacological targeting of mitoNEET with TZDs may acutely protect stem cells following transplantation into an oxidative environment. Continued treatment or manipulation of mitochondrial metabolism may be necessary to produce long-term benefits related to stem cell therapies.


Assuntos
Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Células-Tronco/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Citometria de Fluxo , Masculino , Camundongos , Camundongos Knockout , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Miócitos Cardíacos/citologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Zucker , Reação em Cadeia da Polimerase em Tempo Real , Células-Tronco/citologia
20.
Mater Sci Eng C Mater Biol Appl ; 48: 663-72, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25579969

RESUMO

Although regenerative medicine utilizing tissue scaffolds has made enormous strides in recent years, many constraints still hamper their effectiveness. A limitation of many scaffolds is that they form surface patches, which are not particularly effective for some types of "wounds" that are deep within tissues, e.g., stroke and myocardial infarction. In this study, we reported the generation of fibrous micro-scaffolds feasible for delivering cells by injection into the tissue parenchyma. The micro-scaffolds (widths<100µm) were made by dewetting of poly(lactic-co-glycolic acid) thin films containing parallel strips, and cells were seeded to form cell/polymer micro-constructs during or post the micro-scaffold fabrication process. Five types of cells including rat induced vascular progenitor cells were assessed for the formation of the micro-constructs. Critical factors in forming fibrous micro-scaffolds via dewetting of polymer thin films were found to be properties of polymers and supporting substrates, temperature, and proteins in the culture medium. Also, the ability of cells to attach to the micro-scaffolds was essential in forming cell/polymer micro-constructs. Both in vitro and in vivo assessments of injecting these micro-scaffolding constructs showed, as compared to free cells, enhanced cell retention at the injected site, which could lead to improved tissue engineering and regeneration.


Assuntos
Infarto do Miocárdio/terapia , Transplante de Células-Tronco/métodos , Células-Tronco/metabolismo , Alicerces Teciduais/química , Animais , Células Imobilizadas/metabolismo , Células Imobilizadas/transplante , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA