Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Asian J Pharm Sci ; 19(3): 100922, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38966286

RESUMO

Attributing to their broad pharmacological effects encompassing anti-inflammation, antitoxin, and immunosuppression, glucocorticoids (GCs) are extensively utilized in the clinic for the treatment of diverse diseases such as lupus erythematosus, nephritis, arthritis, ulcerative colitis, asthma, keratitis, macular edema, and leukemia. However, long-term use often causes undesirable side effects, including metabolic disorders-induced Cushing's syndrome (buffalo back, full moon face, hyperglycemia, etc.), osteoporosis, aggravated infection, psychosis, glaucoma, and cataract. These notorious side effects seriously compromise patients' quality of life, especially in patients with chronic diseases. Therefore, glucocorticoid-based advanced drug delivery systems for reducing adverse effects have received extensive attention. Among them, prodrugs have the advantages of low investment, low risk, and high success rate, making them a promising strategy. In this review, we propose the strategies for the design and summarize current research progress of glucocorticoid-based prodrugs in recent decades, including polymer-based prodrugs, dendrimer-based prodrugs, antibody-drug conjugates, peptide-drug conjugates, carbohydrate-based prodrugs, aliphatic acid-based prodrugs and so on. Besides, we also raise issues that need to be focused on during the development of glucocorticoid-based prodrugs. This review is expected to be helpful for the research and development of novel GCs and prodrugs.

2.
Int J Pharm X ; 7: 100258, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38912324

RESUMO

Vincristine (VCR), as a cytotoxic drug, is used clinically to treat acute lymphatic leukemia and breast cancer, and commonly used clinically as vincristine sulfate (VCRS). However, its clinical use is limited by unpredictable pharmacologic characteristics, a narrow therapeutic index, and neurotoxicity. The pH gradient method was used for active drug loading of VCRS, and the process route mainly includes the preparation of blank liposomes and drug-loaded liposomes. VCRS liposomes had suitable particle size, high encapsulation efficiency and good stability. The loading and release kinetics of VCRS liposomes were explored. By calculating the changes of encapsulation efficiency with time at different temperatures, it was confirmed that the drug-loading process of liposomes exhibited a first-order kinetic feature, and the activation energy required for the reaction was determined as 20.6 kcal/mol. The release behavior at different pH was also investigated, and it was demonstrated that the release behavior conformed to the first-order model, suggesting that the release mechanism of VCRS was simple transmembrane diffusion. VCRS liposomes also enhanced in vitro and in vivo antitumor activity. Thus, VCRS liposomes showed great potential for VCRS delivery, and the loading and release kinetics were well researched to provide a reference for investigating active drug loading liposomes.

3.
Front Public Health ; 12: 1399672, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887242

RESUMO

Objectives: The aim of this study is to estimate the excess mortality burden of influenza virus infection in China from 2012 to 2021, with a concurrent analysis of its associated disease manifestations. Methods: Laboratory surveillance data on influenza, relevant population demographics, and mortality records, including cause of death data in China, spanning the years 2012 to 2021, were incorporated into a comprehensive analysis. A negative binomial regression model was utilized to calculate the excess mortality rate associated with influenza, taking into consideration factors such as year, subtype, and cause of death. Results: There was no evidence to indicate a correlation between malignant neoplasms and any subtype of influenza, despite the examination of the effect of influenza on the mortality burden of eight diseases. A total of 327,520 samples testing positive for influenza virus were isolated between 2012 and 2021, with a significant decrease in the positivity rate observed during the periods of 2012-2013 and 2019-2020. China experienced an average annual influenza-associated excess deaths of 201721.78 and an average annual excess mortality rate of 14.53 per 100,000 people during the research period. Among the causes of mortality that were examined, respiratory and circulatory diseases (R&C) accounted for the most significant proportion (58.50%). Fatalities attributed to respiratory and circulatory diseases exhibited discernible temporal patterns, whereas deaths attributable to other causes were dispersed over the course of the year. Conclusion: Theoretically, the contribution of these disease types to excess influenza-related fatalities can serve as a foundation for early warning and targeted influenza surveillance. Additionally, it is possible to assess the costs of prevention and control measures and the public health repercussions of epidemics with greater precision.


Assuntos
Causas de Morte , Influenza Humana , Humanos , Influenza Humana/mortalidade , Influenza Humana/epidemiologia , China/epidemiologia , Adulto , Pessoa de Meia-Idade , Masculino , Feminino , Pré-Escolar , Adolescente , Criança , Lactente , Idoso , Adulto Jovem , Vigilância da População
4.
Pharm Res ; 41(6): 1271-1284, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38839720

RESUMO

PURPOSE: Traditional progesterone (PRG) injections require long-term administration, leading to poor patient compliance. The emergence of long-acting injectable microspheres extends the release period to several days or even months. However, these microspheres often face challenges such as burst release and incomplete drug release. This study aims to regulate drug release by altering the crystallinity of the drug during the release process from the microspheres. METHODS: This research incorporates methoxy poly(ethylene glycol)-b-poly(lactide-co-glycolide) (mPEG-PLGA) into poly(lactide-co-glycolide) (PLGA) microspheres to enhance their hydrophilicity, thus regulating the release rate and drug morphology during release. This modification aims to address the issues of burst and incomplete release in traditional PLGA microspheres. PRG was used as the model drug. PRG/mPEG-PLGA/PLGA microspheres (PmPPMs) were prepared via an emulsification-solvent evaporation method. Scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), and differential scanning calorimetry (DSC) were employed to investigate the presence of PRG in PmPPMs and its physical state changes during release. RESULTS: The addition of mPEG-PLGA altered the crystallinity of the drug within the microspheres at different release stages. The crystallinity correlated positively with the amount of mPEG-PLGA incorporated; the greater the amount, the faster the drug release from the formulation. The bioavailability and muscular irritation of the long-acting injectable were assessed through pharmacokinetic and muscle irritation studies in Sprague-Dawley (SD) rats. The results indicated that PmPPMs containing mPEG-PLGA achieved low burst release and sustained release over 7 days, with minimal irritation and self-healing within this period. PmPPMs with 5% mPEG-PLGA showed a relative bioavailability (Frel) of 146.88%. IN CONCLUSION: In summary, adding an appropriate amount of mPEG to PLGA microspheres can alter the drug release process and enhance bioavailability.


Assuntos
Liberação Controlada de Fármacos , Microesferas , Polietilenoglicóis , Ratos Sprague-Dawley , Polietilenoglicóis/química , Animais , Progesterona/química , Progesterona/administração & dosagem , Progesterona/farmacocinética , Preparações de Ação Retardada/química , Ratos , Cristalização , Portadores de Fármacos/química , Tamanho da Partícula , Poliésteres/química , Feminino , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Disponibilidade Biológica
5.
ACS Nano ; 18(24): 15557-15575, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38837909

RESUMO

Tumor vaccines have demonstrated a modest response rate, primarily attributed to their inefficient delivery to dendritic cells (DCs), low cross-presentation, DC-intrinsic immunosuppressive signals, and an immunosuppressive tumor microenvironment (TME). Here, draining lymph node (DLN)-targeted and tumor-targeted nanovaccines were proposed to address these limitations, and heterocyclic lipidoid (A18) and polyester (BR647) were synthesized to achieve dual-targeted cancer immunotherapy. Meanwhile, oligo hyaluronic acid (HA) and DMG-PEG2000-Mannose were incorporated to prepare dual-targeted nanovaccines encapsulated with STAT3 siRNA and model antigens. The nanovaccines were designed to target the DLN and the tumor, facilitating the delivery of cargo into the cytoplasm. These dual-targeted nanovaccines improved antigen presentation and DC maturation, activated the stimulator of interferon genes (STING) pathway, enhanced the pro-apoptotic effect, and stimulated antitumor immune responses. Additionally, these dual-targeted nanovaccines overcame immunosuppressive TME, reduced immunosuppressive cells, and promoted the polarization of tumor-associated neutrophils from N2 to N1. Among the four dual-targeted nanovaccines that induced robust antitumor responses, the heterocyclic lipidoid@polyester hybrid nanovaccines (MALO@HBNS) demonstrated the most promising results. Furthermore, a combination strategy involving MALO@HBNS and an anti-PD-L1 antibody exhibited an immensely powerful anticancer role. This work introduced a dual-targeted nanovaccine platform for antitumor treatment, suggesting its potential combination with an immune checkpoint blockade as a comprehensive anticancer strategy.


Assuntos
Vacinas Anticâncer , Imunoterapia , Nanopartículas , Poliésteres , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/química , Animais , Camundongos , Poliésteres/química , Nanopartículas/química , Camundongos Endogâmicos C57BL , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Células Dendríticas/imunologia , Feminino , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Lipídeos/química , Humanos , Neoplasias/terapia , Neoplasias/imunologia , Linhagem Celular Tumoral , RNA Interferente Pequeno/química , Ácido Hialurônico/química , Nanovacinas
6.
Heliyon ; 10(9): e30603, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38726149

RESUMO

Objectives: Epithelial ovarian cancer (EOC) is considered to be a prevalent female malignancy with both high incidence and mortality. It is reported that RNA-binding protein 3 (RBMS3) executives a tumor suppressor function in different cancers. This investigation was designed to examine the expression of RBMS3 in epithelial ovarian cancer, the effects on EOC cells, and its connection to immune cells that infiltrate tumors in the EOC microenvironment. Methods: The expression levels of RBMS3 in EOC tissues as well as their correlations with immune cell infiltration and clinical outcome were examined using bioinformatics approaches. Western blotting as well as immunohistochemistry were carried out to determine the protein levels in EOC tissues. In addition, qRT-PCR was employed to look at the expression of the mRNA. The role of RBMS3 in EOC cells was investigated, and an RBMS3 lentiviral vector was developed. The effects of RBMS3 on subcutaneous tumor development, the proliferation protein Ki-67, the tumor angiogenesis indicator CD31, and its function in controlling the tumor immune microenvironment were evaluated by in vivo tests. Results: There was a considerable decrease in RBMS3 expression in EOC tissues, which was linked to a poor prognosis for patients and the infiltration of multiple immune cell. Given immunohistochemical studies, tissues with increased RBMS3 expression had decreased markers of myeloid-derived suppressor cells, regulatory T cells, and M2 macrophages, whereas M1 macrophage markers were elevated. RBMS3 appears to suppress the capabilities of proliferating, invading, and migrating in EOC cells according to in vitro tests, whereas tumors overexpressing RBMS3 developed more slowly in syngeneic mouse models. The overexpression of RBMS3 led to a decline in the levels of Ki-67 protein and CD31. Additionally, it showed a negatively correlation with markers of regulatory T cell, myeloid-derived suppressor cell, and M2 macrophage but a positive correlation with markers of M1 macrophage. Conclusions: The findings revealed that elevated RBMS3 expression plays a tumor suppressor role in EOC and was connected to patient survival in EOC. The studies conducted in vitro and in vivo demonstrated a link between RBMS3 expression and the infiltration of certain immune cells, indicating a function for RBMS3 in the immunosuppressive tumor microenvironment and its promising efficiency as a novel target for immunotherapy against EOC.

7.
Int J Pharm ; 658: 124213, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729382

RESUMO

Safe and effective Cu2+ supplementation in local lesion is crucial for minimizing toxicity of DSF-based chemotherapy. Targeted delivery of Cu2+ appears more promising. Intraperitoneal chemotherapy for peritoneal carcinoma (PC) establishes "face-to-face" contact between targeted nanocarriers and tumor tissue. Herein, this study developed a biodegradable, injectable thermosensitive hydrogel that coencapsulating DSF submicroemulsion (DSF-SE) and folate-modified liposome loading glycyrrhizic acid-Cu (FCDL). FCDL acted as 'beneficial horse' to target the tumor-localized folate receptor, thus liberating Cu2+ in tumor nidus. The prepared FCDL and DSF-SE were found with uniform sizes (160.2 nm, 175.4 nm), low surface charge (-25.77 mV, -16.40 mV) and high encapsulation efficiency (97.93 %, 90.08 %). In vitro drug release profile of FCDL, DSF-SE and FCDL&DSF-SE@G followed a sustained release pattern. And the release behavior of Cu2+ from FCDL was pH-related, i.e., Cu2+ was released faster under acidic condition. When FCDL and DSF-SE were loaded into an PLGA-PEG-PLGA-based hydrogel system, FCDL&DSF-SE@G was formed to ensure separated delivery of Cu2+ and DSF in space but synchronized release over time. The rheology experiment showed a satisfactory gelling temperature of 32.7 °C. In vitro cytotoxicity study demonstrated that FCDL&DSF-SE@G significantly lowered the IC50 of free Cu2+/DSF, Cu2+/DSF hydrogel and non-targeted analogue by almost 70 %, 65 % and 32 %, respectively. Accordingly, in tumor-bearing mice, FCDL&DSF-SE@G augmented the tumor inhibition rates for the same formulations by 352 %, 145 % and 44 %, respectively. The main mechanism was attributed to higher uptake of FCDL and DSF-SE, resulting in increased Cu(DDTC)2 formation, ROS production and cell apoptosis. In conclusion, this targeted nanotherapy approach with dual-nanocarriers loaded hydrogel system, with its focus on face-to-face contact between nanocarriers and tumor tissues in the peritoneal cavity, holds significant promise for intraperitoneal chemotherapy in PC.


Assuntos
Cobre , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Ácido Fólico , Lipossomos , Ácido Fólico/química , Ácido Fólico/administração & dosagem , Animais , Cobre/química , Cobre/administração & dosagem , Linhagem Celular Tumoral , Humanos , Ácido Glicirrízico/química , Ácido Glicirrízico/administração & dosagem , Hidrogéis/química , Nanopartículas/química , Camundongos Endogâmicos BALB C , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacologia , Camundongos , Temperatura , Sobrevivência Celular/efeitos dos fármacos , Feminino , Camundongos Nus , Portadores de Fármacos/química , Polietilenoglicóis/química
8.
Int J Pharm ; 654: 123991, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38471578

RESUMO

The degradation of peptide drugs limits the application of peptide drug microspheres. Structural changes of peptides at the water-oil interface and the destruction of their spatial structure in the complex microenvironment during polymer degradation can affect drug release and in vivo biological activity. This study demonstrates that adding hydroxyethyl starch (HES) to the internal aqueous phase (W1) significantly enhances the stability of semaglutide and optimizes its release behavior in PLGA microspheres. The results showed that this improvement was due to a spontaneous exothermic reaction (ΔH = -132.20 kJ mol-1) facilitated by hydrogen bonds. Incorporating HES into the internal aqueous phase using the water-in-oil-in-water (W1/O/W2) emulsion method yielded PLGA microspheres with a high encapsulation rate of 94.38 %. Moreover, microspheres with HES demonstrated well-controlled drug release over 44 days, unlike the slower and incomplete release in microspheres without HES. The optimized h-MG2 formulation achieved a more complete drug release (83.23 %) and prevented 30.65 % of drug loss compared to the HES-free microspheres within the same period. Additionally, the optimized semaglutide microspheres provided nearly three weeks of glycemic control with adequate safety. In conclusion, adding HES to the internal aqueous phase improved the in-situ drug stability and release behavior of semaglutide-loaded PLGA microspheres, effectively increasing the peptide drug payload in PLGA microspheres.


Assuntos
Peptídeos Semelhantes ao Glucagon , Ácido Láctico , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ácido Láctico/química , Ácido Poliglicólico/química , Estabilidade de Medicamentos , Microesferas , Composição de Medicamentos/métodos , Tamanho da Partícula , Peptídeos , Água , Amido/química
9.
Clin Transl Oncol ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478261

RESUMO

OBJECTIVE: The primary goal of this study was to investigate the expressions of TUFT1 (Tuftelin) and Rac1-GTP in the cancerous tissues of individuals with triple-negative breast cancer (TNBC). Additionally, we aimed to explore the correlation between TUFT1 and Rac1-GTP expressions and examine the associations of TUFT1 and Rac1-GTP expressions with the clinical and pathological indicators of the patients. METHODS: Ninety-six patients diagnosed with TNBC, scheduled for surgery between May 2022 and November 2022, were enrolled in this study. Cancerous tissue specimens were collected from these patients, and immunohistochemistry was employed to evaluate the levels of TUFT1 and Rac1-GTP expressions in the cancerous tissues. Subsequent to data collection, a comprehensive analysis was conducted to examine the correlation between TUFT1 and Rac1-GTP expressions. Furthermore, we sought to assess the associations of TUFT1 and Rac1-GTP expressions with the clinical and pathological indicators of the patients. RESULTS: The TUFT1 protein was expressed in both the membrane and cytoplasm of TNBC cancer cells, with notably higher expression observed in the cytoplasm. Rac1-GTP was primarily expressed in the cytoplasm. There was a positive correlation between the levels of TUFT1 and Rac1-GTP expressions (χ2 = 9.816, P < 0.05). The levels of TUFT1 and Rac1-GTP protein expressions showed no correlation with patient age (χ2 = 2.590, 2.565, P > 0.05); however, they demonstrated a positive correlation with tumor size (χ2 = 5.592,5.118), histological grading (χ2 = 6.730, 5.443), and lymph node metastasis (χ2 = 8.221, 5.180) (all with a significance level of P < 0.05). CONCLUSION: A significant correlation was identified between the levels of TUFT1 and Rac1-GTP expressions in the cancerous tissues of patients with TNBC, suggesting a close association with the progression of TNBC. The two molecules play significant roles in facilitating an early diagnosis and treatment of TNBC.

10.
Int J Pharm ; 652: 123800, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38218507

RESUMO

The ancient anti-alcohol drug disulfiram (DSF) has gained widespread attention for its highly effective anti-tumor effects in cancer treatment. Our previous studies have developed liposome of Cu (DDC)2 to overcome the limitations, like the poor water solubility. However, Cu (DDC)2 liposomes still have shown difficulties in severe hemolytic reactions at high doses and systemic toxicity, which have limited their clinical use. Therefore, this study aims to exploratively investigate the feasibility of using DSF or DDC in combination also can chelate Zn2+ to form zinc diethyldithiocarbamate (Zn (DDC)2). Furthermore, this study prepared stable and homogeneous Zn (DDC)2 liposomes, which were able to be released in the tumor microenvironment (TME). The released Zn (DDC)2 was converted to Cu (DDC)2 with the help of endogenous Cu2+-switch enriched in the TME, which has a higher stability constant compared with Zn (DDC)2. In other words, the Cu2+-switch is activated at the tumor site, completing the conversion of the less cytotoxic Zn (DDC)2 to the more cytotoxic Cu (DDC)2 for effective tumor therapy so that the Zn (DDC)2 liposomes in vivo achieved the comparable therapeutic efficacy and provided a safer alternative to Cu (DDC)2 liposomes in cancer therapy.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Lipossomos/uso terapêutico , Ditiocarb/uso terapêutico , Dissulfiram , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Zinco , Cobre/uso terapêutico , Microambiente Tumoral , Descarboxilases de Aminoácido-L-Aromático/uso terapêutico
11.
Expert Opin Drug Deliv ; 21(1): 169-185, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38224039

RESUMO

BACKGROUND: Exendin-4 (Ex4) is a promising drug for diabetes mellitus with a half-life of 2.4 h in human bodies. Besides, the Ex4 formulations currently employed in the clinic or under development have problems pertaining to stability. In this study, palmitic acid-modified Ex4 (Pal-Ex4) was prepared and purified to extend the half-life of Ex4. In addition, Pal-Ex4-MVLs were further designed and optimized as a long-acting delivery system for intramuscular injection. METHODS: Pal-Ex4 was encapsulated within multivesicular liposomes (MVLs) via a two-step double emulsification process. The formulated products were then assessed for their vesicle size, encapsulation efficiency, and in vitro and in vivo. RESULTS: Pal-Ex4-MVLs with a notable encapsulation efficiency of 99.18% were successfully prepared. Pal-Ex4-MVLs, administered via a single intramuscular injection in Sprague-Dawley rats, sustained stable plasma concentrations for 168 h, presenting extended half-life (77.28 ± 12.919 h) and enhanced relative bioavailability (664.18%). MVLs protected Ex4 through providing stable retention and slow release. This approach considerably improved the in-situ stability of the drug for intramuscular administration. CONCLUSIONS: The combination of palmitic acid modification process with MVLs provides dual protection for Ex4 and can be a promising strategy for other hydrophilic protein/polypeptide-loaded sustained-release delivery systems with high drug bioactivity.


Assuntos
Lipossomos , Ácido Palmítico , Ratos , Animais , Humanos , Exenatida , Injeções Intramusculares , Preparações de Ação Retardada , Ratos Sprague-Dawley
12.
Int J Biol Macromol ; 259(Pt 2): 129319, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211920

RESUMO

Blending poly(butylene succinate) (PBS) with another biodegradable polymer, polyglycolic acid (PGA), has been demonstrated to improve the barrier performance of PBS. However, blending these two polymers poses a challenge because of their incompatibility and large difference of their melting temperatures. In this study, we synthesized epoxidized soybean oil branched cardanol ether (ESOn-ECD), a bio-based and environmentally friendly compatibilizer, and used it to enhance the compatibility of PBS/PGA blends. It was demonstrated that the terminal carboxyl/hydroxyl groups of PBS and PGA can react with ESOn-ECD in situ, leading to branching and chain extension of PBS and PGA. The addition of ESO3-ECD to the blend considerably diminished the dispersed phase of PGA. Specifically, in comparison to the PBS/PGA blend without a compatibilizer, the diameter of the PGA phase decreased from 2.04 µm to 0.45 µm after the addition of 0.7 phr of ESO3-ECD, and the boundary between the two phases became difficult to distinguish. Additionally, the mechanical properties of the blends were improved after addition of ESO3-ECD. This research expands the potential applications of these materials and promotes the use of bio-based components in blend formulations.


Assuntos
Butileno Glicóis , Éteres , Fenóis , Poliésteres , Polímeros , Óleo de Soja , Ácido Poliglicólico
13.
J Proteomics ; 292: 105057, 2024 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-38043864

RESUMO

The erythromycin polyketide compound TMC-154 is a secondary metabolite that is isolated from the rhizospheric fungus Clonostachys rogersoniana associated with Panax notoginseng, which possesses antibacterial activity. However, its antibacterial mechanism has not been investigated thus far. In this study, proteomics coupled with bioinformatics approaches was used to explore the antibacterial mechanism of TMC-154. KEGG pathway enrichment analysis indicated that eight signaling pathways were associated with TMC-154, including oxidative phosphorylation, cationic antimicrobial peptide (CAMP) resistance, benzoate degradation, heme acquisition systems, glycine/serine and threonine metabolism, beta-lactam resistance, ascorbate and aldarate metabolism, and phosphotransferase system (PTS). Cell biology experiments confirmed that TMC-154 could induce reactive oxygen species (ROS) generation in Streptococcus pyogenes; moreover, TMC-154-induced antibacterial effects could be blocked by the inhibition of ROS generation with the antioxidant N-acetyl L-cysteine. In addition, TMC-154 combined with ciprofloxacin or chloramphenicol had synergistic antibacterial effects. These findings indicate the potential of TMC-154 as a promising drug to treat S. pyogenes infections. SIGNIFICANCE: Streptococcus pyogenes is a nearly ubiquitous human pathogen that causes a variety of diseases ranging from mild pharyngitis and skin infection to fatal sepsis and toxic heat shock syndrome. With the increasing incidence of known antibiotic resistance, there is an urgent need to find novel drugs with good antibacterial activity against S. pyogenes. In this study, we found that TMC-154, a secondary metabolite from the fungus Clonostachys rogersoniana, inhibited the growth of various bacteria, including Staphylococcus aureus, S. pyogenes, Streptococcus mutans, Pseudomonas aeruginosa and Vibrio parahemolyticus. Proteomic analysis combined with cell biology experiments revealed that TMC-154 stimulated ROS generation to exert antibacterial effects against S. pyogenes. This study provides potential options for the treatment of S. pyogenes infections in the future.


Assuntos
Eritromicina , Streptococcus pyogenes , Humanos , Eritromicina/farmacologia , Espécies Reativas de Oxigênio , Proteômica , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
14.
Int J Biol Macromol ; 253(Pt 8): 127690, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37898254

RESUMO

Docetaxel (DTX) has become one of the most important cytotoxic drugs to treat cancer; nevertheless, its poor hydrophilicity and non-specific distribution of DTX lead to detrimental side effects. In this article, we devised carboxymethylcellulose (CMC)-conjugated polymeric prodrug micelles (mPEG-CMC-DTX PMs) for DTX delivery. The ester-bonded polymeric prodrug, mPEG-CMC-DTX, was synthesized and exhibited the capacity for self-assembling into polymeric micelles. The CMC is profusely substituted and acetylated to promote the coupling rate of DTX. Covalent binding of DTX and CMC through an ester bond can be hydrolyzed to dissociate the bond under the action of esterase in the tumor. The mPEG-CMC-DTX PMs displayed promoted drug loading (>50 %, wt), commendable stability, and sustained release behavior in vitro. The gradual release of the prodrug amplified the selectivity of cytotoxicity between normal cells and tumor cells, mitigating the systemic toxicity of mPEG-CMC-DTX PMs and enabling dose intensification. Notably, mPEG-CMC-DTX PMs demonstrated a superior antitumor efficacy and low systemic toxicity due to the elevated tolerance dosage (even at 40 mg/kg DTX). In summation, mPEG-CMC-DTX PMs harmonized the antitumor efficacy and toxicity of DTX. In essence, innovative perspectives for the rational design of CMC-conjugated polymeric prodrug micelles for the delivery of potently toxic drugs were proffered.


Assuntos
Antineoplásicos , Pró-Fármacos , Docetaxel/farmacologia , Micelas , Pró-Fármacos/farmacologia , Carboximetilcelulose Sódica , Taxoides/química , Polietilenoglicóis/química , Antineoplásicos/química , Polímeros/química , Ésteres , Linhagem Celular Tumoral
15.
Int J Pharm ; 646: 123500, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37820944

RESUMO

As the only Food and Drug Administration (FDA)-approved dual-encapsulation liposome injection for treating Acute myeloid leukemia (AML), CPX-351 outperforms the standard chemotherapy treatment "DA 7 + 3″ in terms of clinical effectiveness. Although research on dual-loaded liposomes has increased in recent years, little attention has been paid to their preparation, which can affect their quality, efficacy, and safety. This study explored various preparation processes to create the cytarabine/daunorubicin co-loaded liposome (the Cyt/Daun liposome) and eventually settled on two methods: the sequential loading approach, thin film hydration-extrusion-copper ion gradient, and the simultaneous encapsulation technique, copper ion gradient-concentration gradient. Different preparation methods resulted in different particle sizes and encapsulation efficiencies; the two aforementioned preparation processes generated dual-loaded liposomes with comparable physicochemical properties. The sequential encapsulation technique was selected for the subsequent research owing to its higher encapsulation efficiency prior to purification; the prepared Cyt/Daun liposomes had small and uniform particle size (108.6 ± 1.02 nm, Polydispersity index (PDI) 0.139 ± 0.01), negative charge (-(60.2 ± 1.15) mV), high drug encapsulation efficiency (Cyt 88.2 ± 0.24 %, Duan 94.2 ± 0.45 %) and good plasma stability. To improve its storage stability, the Cyt/Daun liposome was lyophilized (-40 °C for 4 h, maintained for 130 min, and dried for 1200 min) using sucrose-raffinose (mass ratio 7:3; glycolipid ratio 4:1, w/w) as a lyoprotectant. The lyophilized liposomes were purple cakes, redissolved rapidly with insignificant alterations in particle size and encapsulation efficiency, and possessed well storage stability. The pharmacokinetic and tissue distribution studies demonstrated that the Cyt/Daun liposome could achieve long circulation and maintain synergic proportions of drugs within 24 h, increasing the accumulation of drugs at tumor sites. Furthermore, the in vitro/in vivo pharmacodynamic studies confirmed its good anti-tumor activity and safety.


Assuntos
Leucemia Mieloide Aguda , Lipossomos , Humanos , Lipossomos/uso terapêutico , Cobre/uso terapêutico , Daunorrubicina , Leucemia Mieloide Aguda/tratamento farmacológico , Citarabina
16.
Colloids Surf B Biointerfaces ; 232: 113599, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37857183

RESUMO

Interventional therapies are increasingly used in clinical trials for hepatocellular carcinoma (HCC). Sorafenib is the front-line remedy for HCC, however, chemoresistance occurs immutably and affects the effectiveness of treatment. In a previous study, a norcantharidin liposome emulsion hybrid (NLEH) delivery system for HCC was developed. This study aims to examine the therapeutic effects of the combination of intratumoral injection of NLEH and sorafenib in treating HCC. Sorafenib combined with NLEH activated the apoptosis pathway by synergistically upregulating caspase-9, promoting cytotoxicity, apoptosis (64.57%), and G2/M cell cycle arrest (48.96%). Norcantharidin could alleviate sorafenib resistance by counteracting sorafenib-induced phosphorylation of Akt. Additionally, intratumoral injection of NLEH exhibited a sustained accumulation in the tumor within 24 h and didn't distribute to other major organs. Intratumoral injection of NLEH in combination with oral sorafenib displayed the most potent tumor growth inhibitory effect (77.91%) in vivo. H&E staining results and the indicators of the renal and liver function tests demonstrated the safety of this combination therapy. Overall, these results showed that intratumoral injection of NLEH in combination with oral sorafenib treatment represented a rational potential therapeutic option for HCC.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Lipossomos/farmacologia , Neoplasias Hepáticas/patologia , Emulsões/farmacologia , Injeções Intralesionais , Linhagem Celular Tumoral , Apoptose , Proliferação de Células
17.
Biomater Sci ; 11(19): 6619-6634, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37608695

RESUMO

Cancer vaccine-based immunotherapy has great potential; however, the vaccines have been hindered by the immunosuppressive tumor microenvironment (TME). In this study, dual-responsive PEG-lipid polyester nanoparticles (PEG BR647-NPs) for tumor-targeted delivery were proposed. PEG BR647-NPs containing the model tumor-associated antigen (TAA) OVA and the signal transduction and activator of transcription 3 (STAT3) siRNA were delivered to the tumor. The PEG BR647-NPs were internalized by tumor-associated dendritic cells (TADCs), where the TAA and siRNA were released into the cytoplasm via the endo/lysosome escape effect. The released OVA was presented by the major histocompatibility complex class I to activate T cells, and the released STAT3 siRNA acted to relieve TADC dysfunction, promote TADC maturation, improve antigen-presenting ability, and enhance anticancer T cell immunity. Meanwhile, the PEG BR647-NPs were ingested by tumor cells, killing them by the pro-apoptosis effect of STAT3 siRNA. Moreover, PEG BR647-NPs could reduce the proportion of myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) in tumors and abrogate immunosuppression. The integration of relieved TADC dysfunction, promoted TADC maturation, enhanced antigen cross-presentation, abrogated immunosuppression, and improved pro-apoptosis effect boosted the vaccination for tumor immunotherapy. Thus, PEG BR647-NPs efficiently delivered the vaccine and STAT3 siRNA to the tumor and modulated immunosuppressive TME, thus providing better antitumor effects.


Assuntos
Nanopartículas , Neoplasias , Humanos , RNA Interferente Pequeno , Poliésteres/farmacologia , Microambiente Tumoral , Células Dendríticas , Neoplasias/patologia , Antígenos de Neoplasias , Imunoterapia , Apresentação de Antígeno , Lipídeos
18.
Mol Pharm ; 20(10): 5125-5134, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37647098

RESUMO

Myelosuppression is a prevalent and potentially life-threatening side effect during chemotherapy. As the main active component of ginseng, 20(S)-protopanaxadiol (PPD) is capable of relieving myelosuppression by restoring hematopoiesis and immunity. In this study, PPD was encapsulated in human albumin nanoparticles (PPD-HSA NPs) by nanoparticle albumin-bound (Nab) technology for intramuscular injection to optimize its pharmacokinetic properties and promote recovery of myelosuppression. The prepared PPD-HSA NPs had a particle size of about 280 nm with a narrow size distribution. PPD dispersed as an amorphous state within the PPD-HSA NPs, and the NPs exhibited in vitro sustained release behavior. PPD-HSA NPs showed a favorable pharmacokinetic profile with high absolute bioavailability, probably due to the fact that NPs entered into the blood circulation via lymphatic circulation and were eliminated slowly. In vivo distribution experiments demonstrated that PPD-HSA NPs were mainly distributed in the liver and spleen, but a strong fluorescence signal was also found in the inguinal lymph node, indicating drug absorption via a lymph route. The myelosuppressive model was established using cyclophosphamide as the inducer. Pharmacodynamic studies confirmed that PPD-HSA NPs were effective in promoting the level of white blood cells. Moreover, the neutrophil and lymphocyte counts were significantly higher in the PPD-HSA NPs group compared with the control group. This preliminary investigation revealed that PPD-HSA NPs via intramuscular administration may be an effective intervention strategy to alleviate myelosuppression.

19.
Biomater Sci ; 11(18): 6267-6279, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37545202

RESUMO

Chemodynamic therapy (CDT) is an emerging oncological treatment that eliminates tumor cells by generating lethal hydroxyl radicals (˙OH) through Fenton or Fenton-like reactions within tumors. However, the effectiveness of CDT is limited by the overexpression of glutathione (GSH) and low reaction efficiency in the tumor microenvironment (TME). To address these challenges and enhance tumor treatment, we developed a novel pH-activatable metal ion-drug coordinated nanoparticle (Cu-AXB NPs) system, incorporating a CDT agent (Cu2+) and a chemotherapeutic agent (axitinib, AXB). The obtained Cu-AXB NPs exhibited exceptional characteristics, including ultrahigh drug loading capacity (87.55%) and an average size of 180 nm. These nanoparticles also demonstrated excellent plasma stability and pH-responsive drug release, enabling prolonged circulation in the bloodstream and targeted therapy at weakly acidic tumor sites. Upon release, AXB acted as a chemotherapeutic agent, effectively eliminating tumor cells, while Cu2+ ions were reduced to Cu+ by GSH, further generating toxic ˙OH with hydrogen peroxide (H2O2) for CDT through a Fenton-like reaction. Additionally, the Cu-AXB NPs efficiently disrupted the copper metabolic balance and increased the intracellular Cu content, further amplifying the therapeutic impact of CDT. In vitro studies assessing cytotoxicity and apoptosis confirmed the superior tumor cell-killing efficacy of the Cu-AXB NPs. This enhanced efficacy can be attributed to the synergistic effect of CDT and chemotherapy. Moreover, the Cu-AXB NPs exhibited excellent tumor targeting capabilities, resulting in significant tumor inhibition (77.53% inhibition) while maintaining favorable biocompatibility in tumor-bearing mice. In conclusion, this study presents a promising and safe strategy for cancer therapy by combining CDT with chemotherapy, offering a potential breakthrough in the field of oncology.


Assuntos
Nanopartículas Multifuncionais , Nanopartículas , Neoplasias , Animais , Camundongos , Cobre , Axitinibe , Peróxido de Hidrogênio , Glutationa , Microambiente Tumoral , Concentração de Íons de Hidrogênio , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico
20.
J Control Release ; 360: 734-746, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37454913

RESUMO

Various attributes of micelles, such as PEG density and particle size, are considered to be related to blood clearance. The structural stability of micelles is another key attribute that will affect the in vivo fate. This study employed fluorescence resonance energy transfer (FRET) analysis to guide the preparation of polymeric micelles with different structural stability. Micelles prepared using copolymers with longer hydrophobic blocks showed higher structural stability; emulsification was a better method than nanoprecipitation to prepare stable micelles. The fast chain exchange kinetics and the high-water content of micellar cores explained the low structural stability of those micelles. Moreover, this study highlighted the importance of structural stability that affected blood clearance in concert with PEG length and particle size. One-third of the small and stable micelles were detected in the blood 24 h after injection. While unstable micelles would be cleared from the circulation within 4 h. Notably, there would be a threshold of structural stability. Micelles with structural stability below this threshold were quickly cleared even if they possessed a longer PEG length and a smaller size. In contrast, higher structural stability allowed polymeric micelles to maintain higher integrity in vivo and enhance tumor accumulation and anti-tumor efficacy. In conclusion, this study systematically analyzed the importance of the structural stability of micelles on the in vivo fate.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Micelas , Polietilenoglicóis/química , Tamanho da Partícula , Cinética , Polímeros/química , Portadores de Fármacos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA