Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Small ; 19(32): e2300341, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37029564

RESUMO

With the rapid development of nanotechnology and nanomedicine, there are great interests in employing nanomaterials to improve the efficiency of disease diagnosis and treatment. The clinical translation of hafnium oxide (HfO2 ), commercially namedas NBTXR3, as a new kind of nanoradiosensitizer for radiotherapy (RT) of cancers has aroused extensive interest in researches on Hf-based nanomaterials for biomedical application. In the past 20 years, Hf-based nanomaterials have emerged as potential and important nanomedicine for computed tomography (CT)-involved bioimaging and RT-associated cancer treatment due to their excellent electronic structures and intrinsic physiochemical properties. In this review, a bibliometric analysis method is employed to summarize the progress on the synthesis technology of various Hf-based nanomaterials, including HfO2 , HfO2 -based compounds, and Hf-organic ligand coordination hybrids, such as metal-organic frameworks or nanoscaled coordination polymers. Moreover, current states in the application of Hf-based CT-involved contrasts for tissue imaging or cancer diagnosis are reviewed in detail. Importantly, the recent advances in Hf-based nanomaterials-mediated radiosensitization and synergistic RT with other current mainstream treatments are also generalized. Finally, current challenges and future perspectives of Hf-based nanomaterials with a view to maximize their great potential in the research of translational medicine are also discussed.


Assuntos
Antineoplásicos , Nanoestruturas , Neoplasias , Humanos , Háfnio/química , Nanoestruturas/química , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Nanotecnologia/métodos
2.
J Am Chem Soc ; 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36744911

RESUMO

How to optimize the enzyme-like catalytic activity of nanozymes to improve their applicability has become a great challenge. Herein, we present an l-cysteine (l-Cys) coordination-driven self-assembly strategy to activate polyvinylpyrrolidone (PVP)-modified Cu single-atom nanozymes MoOx-Cu-Cys (denoted as MCCP SAzymes) aiming at catalytic tumor-specific therapy. The Cu single atom content of MCCP can be rationally modulated to 10.10 wt %, which activates the catalase (CAT)-like activity of MoOx nanoparticles to catalyze the decomposition of H2O2 in acidic microenvironments to increase O2 production. Excitingly, the maximized CAT-like catalytic efficiency of MCCP is 138-fold higher than that of typical MnO2 nanozymes and exhibits 14.3-fold higher affinity than natural catalase, as demonstrated by steady-state kinetics. We verify that the well-defined l-Cys-Cu···O active sites optimize CAT-like activity to match the active sites of natural catalase through an l-Cys bridge-accelerated electron transfer from Cys-Cu to MoOx disclosed by density functional theory calculations. Simultaneously, the high loading Cu single atoms in MCCP also enable generation of •OH via a Fenton-like reaction. Moreover, under X-ray irradiation, MCCP converts O2 to 1O2 for cascading radiodynamic therapy, thereby facilitating the multiple reactive oxygen species (ROS) for radiosensitization to achieve substantial antitumor.

3.
Angew Chem Int Ed Engl ; 61(16): e202115939, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35080098

RESUMO

The existence of natural van der Waals gaps in layered materials allows them to be easily intercalated with varying guest species, offering an appealing strategy to optimize their physicochemical properties and application performance. Herein, we report the activation of layered MoO3 nanobelts via aqueous intercalation as an efficient biodegradable nanozyme for tumor-specific photo-enhanced catalytic therapy. The long MoO3 nanobelts are grinded and then intercalated with Na+ and H2 O to obtain the short Na+ /H2 O co-intercalated MoO3-x (NH-MoO3-x ) nanobelts. In contrast to the inert MoO3 nanobelts, the NH-MoO3-x nanobelts exhibit excellent enzyme-mimicking catalytic activity for generation of reactive oxygen species, which can be further enhanced by the photothermal effect under a 1064 nm laser irradiation. Thus, after bovine serum albumin modification, the NH-MoO3-x nanobelts can efficiently kill cancer cells in vitro and eliminate tumors in vivo facilitating with 1064 nm laser irradiation.


Assuntos
Neoplasias , Óxidos , Catálise , Humanos , Óxidos/química , Espécies Reativas de Oxigênio , Água
4.
Inorg Chem ; 59(24): 17906-17915, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33252238

RESUMO

In this work, BaYF5:20%Yb3+/2%Er3+/x%Bi3+ (abbreviated as BaYF5:Yb,Er,Bix, where x = 0-3.0) upconversion nanoparticles (UCNPs) with various doping concentrations of Bi3+ were synthesized through a simple hydrothermal method. The influence of the doping amount of Bi3+ on the microstructures and upconversion luminescence (UCL) properties of the BaYF5:Yb,Er,Bix UCNPs was studied in detail. The doping concentration of Bi3+ has little influence on the microstructures of the UCNPs but significantly impacts their UCL intensities. Under excitation of a 980 nm near-IR laser, the observed UCL intensities for the BaYF5:Yb,Er,Bix UCNPs display first an increasing trend and then a decreasing trend with an increase in the ratio x, giving a maximum at x = 2.5. A possible energy-transfer process and simplified energy levels of the BaYF5:Yb,Er,Bix UCNPs were proposed. The potential of the BaYF5:Yb,Er,Bix UCNPs as contrast agents for computerized tomography (CT) imaging was successfully demonstrated. An obvious accumulation of BaYF5:Yb,Er,Bix in tumor sites was achieved because of high passive targeting by the enhanced permeability and retention effect and relatively low uptake by a reticuloendothelial system such as liver and spleen. This work paves a new route for the design of luminescence-enhanced UNCPs as promising bioimaging agents for cancer theranostics.


Assuntos
Bismuto/química , Meios de Contraste/síntese química , Európio/química , Nanopartículas Metálicas/química , Itérbio/química , Células A549 , Animais , Sobrevivência Celular/efeitos dos fármacos , Meios de Contraste/química , Humanos , Luminescência , Camundongos , Tomografia Computadorizada por Raios X
5.
ACS Nano ; 14(10): 13016-13029, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-32898419

RESUMO

The level of tumor killing by bismuth nanoparticles (BiNPs) as radiosensitizers depends strongly on the powerful particle-matter interaction. However, this same radiation leads to the structural damage in BiNPs, consequently weakening their specific physicochemical properties for radiosensitization. Herein, we studied the radiation-induced corrosion behavior of BiNPs and demonstrated that these damages were manifested by the change in their morphology and crystal structure as well as self-oxidation at their surface. Furthermore, artificial heterostructures were created with graphene nanosheets to greatly suppress the radiation-induced corrosion in BiNPs and enhance their radiocatalytic activity for radiotherapy enhancement. Such a nanocomposite allows the accumulation of overexpressed glutathione, a natural hole scavenger, at the reaction interfaces. This enables the rapid removal of radiogenerated holes from the surface of BiNPs and minimizes the self-radiooxidation, therefore resulting in an efficient suppression of radiation corrosion and a decrease of the depletion of reactive oxygen species (ROS). Meanwhile, the radioexcited conduction band electrons react with the high-level H2O2 within cancer cells to yield more ROS, and the secondary electrons are trapped by H2O molecules to produce hydrated electrons capable of reducing a highly oxidized species such as cytochrome c. These radiochemical reactions together with hyperthermia can regulate the tumor microenvironment and accelerate the onset of cellular redox disequilibrium, mitochondrial dysfunction, and DNA damage, finally triggering tumor apoptosis and death. The current work will shed light on radiosensitizers with an enhanced corrosion resistance for controllable and synergistic radio-phototherapeutics.


Assuntos
Nanopartículas , Neoplasias , Bismuto , Corrosão , Humanos , Peróxido de Hidrogênio , Neoplasias/radioterapia , Microambiente Tumoral
6.
ACS Nano ; 14(8): 10001-10017, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32658453

RESUMO

Development of an efficient nanoradiosensitization system that enhances the radiation doses in cancer cells to sensitize radiotherapy (RT) while sparing normal tissues is highly desirable. Here, we construct a tumor microenvironment (TME)-responsive disassembled small-on-large molybdenum disulfide/hafnium dioxide (MoS2/HfO2) dextran (M/H-D) nanoradiosensitizer. The M/H-D can degrade and release the HfO2 nanoparticles (NPs) in TME to enhance tumor penetration of the HfO2 NPs upon near-infrared (NIR) exposure, which can solve the bottleneck of insufficient internalization of the HfO2 NPs. Simultaneously, the NIR photothermal therapy increased peroxidase-like catalytic efficiency of the M/H-D nanoradiosensitizer in TME, which selectively catalyzed intratumorally overexpressed H2O2 into highly oxidized hydroxyl radicals (·OH). The heat induced by PTT also relieved the intratumoral hypoxia to sensitize RT. Consequently, this TME-responsive precise nanoradiosensitization achieved improved irradiation effectiveness, potent oxygenation in tumor, and efficient suppression to tumor, which can be real-time monitored by computed tomography and photoacoustic imaging.


Assuntos
Nanopartículas , Neoplasias , Háfnio , Humanos , Peróxido de Hidrogênio , Neoplasias/terapia , Fototerapia , Microambiente Tumoral
7.
Nanoscale ; 12(15): 8415-8424, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32239043

RESUMO

Herein, we developed a general two-step gas expansion and exfoliation strategy based on a urea-assisted hydrothermal process combined with sonication exfoliation for the production of nitrogen (N)-doped plus defect-rich transition metal dichalcogenide (TMD) nanosheets (NSs) such as N-MoS2 and N-WS2 NSs. The interlayers of bulk MoS2 (or WS2) were expanded with urea molecules dissolved in distilled water, which were decomposed to NH3 during the hydrothermal process. Simultaneously, sulfur atoms were partly replaced by N atoms to achieve N doping. Subsequently, sonication exfoliation of the urea-treated bulk MoS2 (or WS2) promoted the production of defect-rich NSs. Importantly, the defect-rich N-MoS2 and N-WS2 NSs exhibit enhanced peroxidase-like catalytic activity after being captured by bacteria, and can catalyze hydrogen peroxide (H2O2) to produce more toxic hydroxyl radicals (˙OH) than non-N-doped MoS2 or WS2 NSs. As a result, the N-MoS2 or N-WS2 NSs were capable of effectively killing Gram-negative ampicillin resistant Escherichia coli (AmprE. coli) and Gram-positive endospore-forming Bacillus subtilis (B. subtilis) and promoting bacteria-infected wound healing. This work not only provides a simple, universal exfoliation strategy for producing defect-rich N-doped TMD NSs but also provides a promising catalytic antibacterial option and has potential for many other catalytic applications.


Assuntos
Antibacterianos/química , Calcogênios/química , Nanoestruturas/química , Nitrogênio/química , Elementos de Transição/química , Animais , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Catálise , Calcogênios/farmacologia , Dissulfetos/química , Dissulfetos/farmacologia , Peróxido de Hidrogênio/química , Camundongos , Molibdênio/química , Molibdênio/farmacologia , Nitrogênio/farmacologia , Peroxidase/farmacologia , Propriedades de Superfície , Elementos de Transição/farmacologia , Ureia/química , Infecção dos Ferimentos/tratamento farmacológico
8.
Nanoscale ; 11(11): 4767-4780, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30816394

RESUMO

Nano-MoS2 has been extensively investigated in materials science and biomedicine. However, the effects of different methods of exposure on their translocation, biosafety, and biotransformation-related degradability remain unclear. In this study, we combined the advantages of synchrotron radiation (SR) X-ray absorption near-edge structure (XANES) and high-resolution single-cell SR transmission X-ray microscopy (SR-TXM) with traditional analytical techniques to investigate translocation, precise degraded species/ratio, and correlation between the degradation and toxicity levels of polyvinylpyrrolidone-modified 2H-phase MoS2 nanosheets (MoS2-PVP NSs). These NSs demonstrated different biodegradability levels in biomicroenvironments with H2O2, catalase, and human myeloperoxidase (hMPO) (H2O2 < catalase < hMPO). The effects of NSs and their biodegraded byproducts on cell viability and 3D translocation at the single-cell level were also assessed. Toxicity and translocation in mice via intravenous (i.v.), intraperitoneal (i.p.), and intragastric (i.g.) administration routes guided by fluorescence (FL) imaging were investigated within the tested dosage. After i.g. administration, NSs accumulated in the gastrointestinal organs and were excreted from feces within 48 h. After i.v. injection, NSs showed noticeable clearance due to their decreased accumulation in the liver and spleen within 30 days when compared with that in the i.p. group, which exhibited slight accumulation in the spleen. This work paves the way for understanding the biological behaviors of nano-MoS2 using SR techniques that provide more opportunities for future applications.


Assuntos
Dissulfetos/farmacocinética , Dissulfetos/toxicidade , Molibdênio/farmacocinética , Molibdênio/toxicidade , Nanoestruturas/toxicidade , Povidona/farmacocinética , Povidona/toxicidade , Animais , Biotransformação , Sobrevivência Celular/efeitos dos fármacos , Dissulfetos/administração & dosagem , Dissulfetos/química , Vias de Administração de Medicamentos , Masculino , Camundongos Endogâmicos BALB C , Molibdênio/administração & dosagem , Molibdênio/química , Nanomedicina , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Povidona/administração & dosagem , Povidona/química , Distribuição Tecidual
9.
Adv Sci (Weinh) ; 6(3): 1801122, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30775223

RESUMO

Mild photothermal therapy (PTT), as a new anticancer therapeutic strategy, faces big challenges of limited therapeutic accuracy and side-effects due to uneven heat distribution. Here, near infrared triggered nitric oxide (NO) release nanocomposites based on bismuth sulfide (Bi2S3) nanoparticles and bis-N-nitroso compounds (BNN) are constructed for NO-enhanced mild photothermal therapy. Upon 808 nm irradiation, the high photothermal conversion efficiency and on-demand NO release are realized simultaneously. Due to the unique properties of NO, enhanced antitumor efficacy of mild PTT based on BNN-Bi2S3 nanocomposites is achieved in vitro and in vivo. Mechanism studies reveal that the exogenous NO from BNN-Bi2S3 could not only impair the autophagic self-repairing ability of tumor cells in situ, but also diffuse to the surrounding cells to enhance the therapeutic effect. This work points out a strategy to overcome the difficulties in mild PTT, and has potentials for further exploitation of NO-sensitized synergistic cancer therapy.

10.
J Nanosci Nanotechnol ; 19(6): 3319-3325, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30744759

RESUMO

ZrN powders were successfully synthesized via a facile, economical and efficient gas-solid elemental combination method. The feasibility of biological applications for the ZrN powders were further studied. Firstly, the physical properties including hardness, density and surface roughness were characterized. These results indicated remarkable physical property of ZrN with the harness, density and surface roughness of 551.6 gf · mm-2, 6.47 g cm-3 and 0.11 µm, respectively. Then the in vitro cytotoxicity was evaluated and the hemolysis activity was also performed in red blood cells (RBCs) of mice to investigate the biocompatibility of ZrN powders. Meanwhile, the potentiodynamic polarization test was carried out in PBS to explore its corrosion resistance. The ZrN powders with remarkable physical property and good biocompatibility were demonstrated to have potential application in the field of bone tissue engineering especially in implants protective coatings.


Assuntos
Titânio , Zircônio , Animais , Estudos de Viabilidade , Teste de Materiais , Camundongos , Pós , Propriedades de Superfície
11.
Small ; 14(45): e1802290, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30307703

RESUMO

The rising dangers of bacterial infections have created an urgent need for the development of a new generation of antibacterial nanoagents and therapeutics. A new near-infrared 808 nm laser-mediated nitric oxide (NO)-releasing nanovehicle (MoS2 -BNN6) is reported through the simple assembly of α-cyclodextrin-modified MoS2 nanosheets with a heat-sensitive NO donor N,N'-di-sec-butyl-N,N'-dinitroso-1,4-phenylenediamine (BNN6) for the rapid and effective treatment of three typical Gram-negative and Gram-positive bacteria (ampicillin-resistant Escherichia coli, heat-resistant Escherichia faecalis, and pathogen Staphylococcus aureus). This MoS2 -BNN6 nanovehicle has good biocompatibility and can be captured by bacteria to increase opportunities of NO diffusion to the bacterial surface. Once stimulated by 808 nm laser irradiation, the MoS2 -BNN6 nanovehicle not only exhibits photothermal therapy (PTT) efficacy but also can precisely control NO release, generating oxidative/nitrosative stress. The temperature-enhanced catalytic function of MoS2 induced by 808 nm laser irradiation simultaneously accelerates the oxidation of glutathione. This acceleration disrupts the balance of antioxidants, ultimately resulting in significant DNA damage to the bacteria. Within 10 min, the MoS2 -BNN6 with enhanced PTT/NO synergetic antibacterial function achieves >97.2% inactivation of bacteria. The safe synergetic therapy strategy can also effectively repair wounds through the formation of collagen fibers and elimination of inflammation during tissue reconstruction.


Assuntos
Antibacterianos/química , Dissulfetos/química , Molibdênio/química , Óxido Nítrico/química , Antibacterianos/farmacologia , Dano ao DNA/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Luz , Testes de Sensibilidade Microbiana , Doadores de Óxido Nítrico/química , Staphylococcus aureus/efeitos dos fármacos
12.
Medicine (Baltimore) ; 97(38): e12466, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30235739

RESUMO

RATIONALE: Choroid plexus papillomas are rare benign central nervous system neoplasms arising from choroid plexus epithelium. They are most often located in the lateral ventricle, followed by the fourth and third ventricles and, rarely, in the cerebellopontine angle. PATIENT CONCERNS: We report an uncommon case of a 17-year-old boy who presented with neck pain that had lasted for more than 1 month, with accompanying pain and numbness in his upper extremities. His conditions included slight dizziness, nausea, diplopia, paresthesia, and an unsteady gait. Magnetic resonance imaging (MRI) showed huge cerebellopontine angle tumor that extended to the front medulla oblongata. DIAGNOSIS: Choroid plexus papilloma (WHO I) was diagnosed in this patient. INTERVENTIONS: The patient was referred for neurosurgical intervention. The very large neoplasm was subtotally resected. OUTCOMES: The symptoms of the patient were gradually alleviated after surgery and subsequent radiotherapy treatment, but unfortunately, follow-up of 2 years later revealed that the disease was recurrent and the young man passed away. LESSONS: Neck pain is related to many factors. The case provided an awareness of the origin of severe intracranial disease. It is mandatory to take a thorough clinical assessment with a holistic approach.


Assuntos
Neoplasias Encefálicas/etiologia , Cervicalgia/etiologia , Lobo Occipital , Papiloma do Plexo Corióideo/complicações , Adolescente , Evolução Fatal , Humanos , Masculino
13.
Adv Healthc Mater ; 7(22): e1800830, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30240165

RESUMO

Although various types of photothermal agents are developed for photothermal cancer therapy, relatively few photothermal agents exhibit high tumor inhibition rate under relatively mild conditions. Herein, a multifunctional Bi2 S3 -Tween 20 nanoplatform loaded with PI3K inhibitor LY294002 is designed as a novel photothermal agent for inhibitor and photothermal synergistic therapy of tumors under mild photothermal therapy conditions. The LY294002 of PI3K inhibitor, after being loaded by Bi2 S3 -Tween 20 nanodots, exhibits greatly increased drug utilization and reduced side effects on normal tissues. In vivo, Bi2 S3 -Tween 20@LY294002 upon near-infrared 808 nm laser irradiation shows potent antitumor activity under relatively mild conditions (power density: 0.6 W cm-2 ). Moreover, the mechanism studies also demonstrate that Bi2 S3 -Tween 20@LY294002 potently kills LoVo cancer cells under low-power near-infrared light irradiation, by downregulating the expression of heat shock protein 70 (HSP70) so as to increase the sensitivity of tumor cell hyperthermia and activating BAX/BAK-regulated mitochondrial apoptosis pathway. The results demonstrate that the newly synthesized multifunctional nanoplatform paves a new avenue for accurate therapy of photothermal-resistant cancer.


Assuntos
Bismuto/química , Cromonas/química , Morfolinas/química , Nanopartículas/química , Polissorbatos/química , Sulfetos/química , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Cromonas/farmacologia , Cromonas/uso terapêutico , Regulação para Baixo/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/metabolismo , Hemólise/efeitos dos fármacos , Humanos , Hipertermia Induzida , Raios Infravermelhos , Camundongos , Camundongos Nus , Morfolinas/farmacologia , Morfolinas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/terapia , Inibidores de Fosfoinositídeo-3 Quinase , Fototerapia , Proteína X Associada a bcl-2/metabolismo
14.
Chemistry ; 24(59): 15868-15878, 2018 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-30091228

RESUMO

Abnormal H2 O2 and cholesterol levels are closely related to many diseases. This work reports a facile process for the synthesis of oxidized glutathione (GSSG)-modified MoS2 nanosheets (MoS2 -GSSG NSs). The biocompatible MoS2 -GSSG NSs have good dispersibility and high affinity to the substrate 3,3',5,5'-tetramethylbenzidine (TMB), which is beneficial for improving peroxidase-like catalytic activity of MoS2 . The high peroxidase-like activity of MoS2 -GSSG NSs was applied as a robust nanoplatform for low-cost, rapid, and highly effective colorimetric detection of H2 O2 and total/free cholesterol. Moreover, the peroxidase-like catalytic mechanism was studied by the steady-state kinetics method. The catalytic activity was remarkably high at a wide range of pH (2.4-7.0) and temperature values (25-70 °C). The cholesterol was catalyzed by cholesterol oxidase (ChOx) in the presence of O2 to generate H2 O2 , which oxidized TMB to generate a blue-colored product (oxTMB) under the catalysis of MoS2 -GSSG NSs. The detection limit (DL) of total cholesterol and H2 O2 was as low as 5.36 and 0.51 µm, respectively. The linear ranges for detecting cholesterol and H2 O2 were from 5.36 to 800 µm and from 0.51 to 50 µm, respectively. This method was also successfully applied to the detection of cholesterol in serum. The detection concentration of total cholesterol was consistent with that of the value detected by the blood biochemical method used in the clinic.


Assuntos
Técnicas Biossensoriais/métodos , Colesterol/sangue , Dissulfetos/síntese química , Peróxido de Hidrogênio/análise , Nanoestruturas/química , Animais , Catálise , Sobrevivência Celular , Colorimetria , Glutationa/química , Células Endoteliais da Veia Umbilical Humana , Humanos , Cinética , Limite de Detecção , Camundongos Obesos , Molibdênio , Oxirredução , Tamanho da Partícula , Peroxidases/metabolismo , Propriedades de Superfície , Temperatura
15.
Angew Chem Int Ed Engl ; 57(35): 11384-11388, 2018 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-30003656

RESUMO

Fluorescent dyes with multi-functionality are of great interest for photo-based cancer theranostics. However, their low singlet oxygen quantum yield impedes their potential applications for photodynamic therapy (PDT). Now, a molecular self-assembly strategy is presented for a nanodrug with a remarkably enhanced photodynamic effect based on a dye-chemodrug conjugate. The self-assembled nanodrug possesses an increased intersystem crossing rate owing to the aggregation of dye, leading to a distinct singlet oxygen quantum yield (Φ(1 O2 )). Subsequently, upon red light irradiation, the generated singlet oxygen reduces the size of the nanodrug from 90 to 10 nm, which facilitates deep tumor penetration of the nanodrug and release of chemodrug. The nanodrug achieved in situ tumor imaging and potent tumor inhibition by deep chemo-PDT. Our work verifies a facile and effective self-assembly strategy to construct nanodrugs with enhanced performance for cancer theranostics.


Assuntos
Corantes Fluorescentes/uso terapêutico , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Animais , Corantes Fluorescentes/administração & dosagem , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacocinética , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Nanopartículas/administração & dosagem , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Imagem Óptica , Tamanho da Partícula , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacocinética , Nanomedicina Teranóstica
16.
J Nanosci Nanotechnol ; 18(4): 2387-2393, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29442907

RESUMO

The application of nano-products in the food industry increases the risk of people exposed to nanoparticles. Titanium dioxide nanoparticles (T-NPs) are typically and widely used in food field, while fullerenol nanoparticles (F-NPs) have great promise to be used as food additives. Therefore, it is necessary and important to understand the safety of T-NPs and F-NPs in foods. In the present study, Caco-2 gut epithelial cell line was selected as a model to investigate the impact of T-NPs and F-NPs. The viability and proliferation of Caco-2 gut epithelial cells incubated with different concentrations of T-NPs and F-NPs were observed. The results showed that the two kinds of nanoparticles did not induce cell death even lasting for 48 h. The results of apoptosis and DNA damages in the cells indicated that both T-NPs with 50 and 100 µg/mL caused Caco-2 gut epithelial cell apoptosis, but didn't cause significantly DNA damages. F-NPs with 200 and 500 µg/mL concentrations also can induce cell apoptosis but no DNA damage.


Assuntos
Apoptose/efeitos dos fármacos , Fulerenos/farmacologia , Nanopartículas Metálicas , Titânio/farmacologia , Células CACO-2 , Dano ao DNA , Células Epiteliais , Humanos , Mucosa Intestinal , Nanopartículas , Espécies Reativas de Oxigênio
17.
Nanoscale ; 10(3): 1517-1531, 2018 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-29303196

RESUMO

Near-infrared (NIR) laser induced phototherapy has been considered as a noninvasive option for cancer therapy. Herein, we report plasmonic PEGylated molybdenum oxide nanoparticles (PEG-MoOx NPs) that were synthesized by using a facile hydrothermal method. The PEG-MoOx NPs exhibit broad absorption at the NIR biological window and remarkable photothermal conversion ability in the first (808 nm) and the second (1064 nm) windows. Moreover, the biocompatible PEG-MoOx NPs exhibit effective cellular uptake and could be eliminated gradually from the liver and spleen in mice. Studies on the therapeutic effects of these NPs under 808 and 1064 nm exposures with mild hyperthermia are conducted. According to the result, exposure to 1064 nm irradiation can not only effectively convert light into heat but also sensitize the formation of reactive oxygen species (ROS), which exert dramatic cancer cell death and suppression in vivo due to the synergic effect of photothermal therapy (PTT) and photodynamic therapy (PDT). In marked contrast, 808 nm irradiation can only execute limited PTT to cancer cells, showing a relatively low inhibition rate in vitro and in vivo. This biodegradable MoOx nanoplatform with synergetic PTT and PDT functionalities upon 1064 nm irradiation provided emerging opportunities for the phototherapy of cancer in nanomedicine.


Assuntos
Hipertermia Induzida , Molibdênio , Nanopartículas , Neoplasias Experimentais/terapia , Fotoquimioterapia , Fototerapia , Animais , Células HeLa , Células Hep G2 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Óxidos
18.
ACS Appl Mater Interfaces ; 10(4): 4271-4284, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29318879

RESUMO

Chemotherapy resistance remains a major hurdle for cancer therapy in clinic because of the poor cellular uptake and insufficient intracellular release of drugs. Herein, an intelligent, multifunctional MoS2 nanotheranostic (MoS2-PEI-HA) ingeniously decorated with biodegradable hyaluronic acid (HA) assisted by polyethyleneimine (PEI) is reported to combat drug-resistant breast cancer (MCF-7-ADR) after loading with the chemotherapy drug doxorubicin (DOX). HA can not only target CD44-overexpressing MCF-7-ADR but also be degraded by hyaluronidase (HAase) that is concentrated in the tumor microenvironment, thus accelerating DOX release. Furthermore, MoS2 with strong near-infrared (NIR) photothermal conversion ability can also promote the release of DOX in the acidic tumor environment at a mild 808 nm laser irradiation, achieving a superior antitumor activity based on the programmed response to HAase and NIR laser actuator. Most importantly, HA targeting combined with mild NIR laser stimuli, rather than using hyperthermia, can potently downregulate the expression of drug-resistance-related P-glycoprotein (P-gp), resulting in greatly enhanced intracellular drug accumulation, thus achieving drug resistance reversal. After labeled with 64Cu by a simple chelation strategy, MoS2 was employed for real-time positron emission tomography (PET) imaging of MCF-7-ADR tumor in vivo. This multifunctional nanoplatform paves a new avenue for PET imaging-guided spatial-temporal-controlled accurate therapy of drug-resistant cancer.


Assuntos
Nanoestruturas , Radioisótopos de Cobre , Dissulfetos , Doxorrubicina , Resistencia a Medicamentos Antineoplásicos , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Molibdênio , Tomografia por Emissão de Pósitrons
19.
J Mater Chem B ; 6(3): 487-498, 2018 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-32254528

RESUMO

MoS2 nanoflakes (MoS2 NFs) with a diameter of ∼390 nm were obtained by a facile one-pot hydrothermal method and the NFs exhibited intrinsic peroxidase-like activity. After being modified by commonly used biocompatible surfactants including polyethyleneimine (PEI), polyacrylic acid (PAA), polyvinylpyrrolidone (PVP), and cysteine (Cys), the peroxidase-like catalytic activities of MoS2 NFs were investigated by using 3,3',5,5'-tetramethylbenzidine (TMB) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)diammonium salt (ABTS) as chromogenic substrates. Compared to the polymer modified MoS2 NFs, Cys functionalized MoS2 NFs exhibited a high catalytic activity toward H2O2 in the presence of TMB or ABTS. Zeta potential and Michaelis-Menten analyses implied that the electrostatic force induced affinity or repulsion between the MoS2 NFs and substrates, as well as surface modifications of the MoS2 NFs played a key role in the catalytic reactions. Notably, a new peroxidase-like catalytic reaction mechanism was proposed based on the formation of a transient state of Cys-MoS2 NFs containing H2O2 and ABTS, and the catalytic reaction could occur because the Cys on the surface of the MoS2 NFs served as an electron transfer bridge between H2O2 and ABTS. Based on this finding, we also established a platform for colorimetric detection of H2O2 and glucose using Cys-MoS2 NFs as a peroxidase substitution. The limit of detection (LOD) was determined to be 4.103 µmol L-1 for H2O2, and the linear range (LR) was from 0 to 0.3 mmol L-1. The LOD for glucose was 33.51 µmol L-1 and the LR was from 0.05 to 1 mmol L-1, which is suitable for biomedical diagnosis. This work provides a new insight into the catalytic mechanism of peroxidase-like MoS2 NFs, and paves the way for enzyme-like nanomaterials to be used for medical diagnosis.

20.
ACS Appl Mater Interfaces ; 9(25): 21362-21370, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28570052

RESUMO

Molybdenum disulfide (MoS2) is a two-dimensional (2D) graphene-like material that is gaining great attention because of its potential application in various fields. Here, we reported a self-assembled nanocomposite consisted of MoS2 nanosheets and 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrintetra(p-toluenesulfonate) (TMPyP), named MoS2@TMPyP. This nanocomposite can be used as a sensing probe for low cost, rapid, selective detection of cadmium (Cd2+) ions. It is found that a new Soret band at 442 nm in UV-vis absorption spectra represented the coordination of Cd2+ ions into TMPyP of the MoS2@TMPyP. The coordination rates between TMPyP and Cd2+ ions is greatly accelerated from 72 h to 20 min with the assistance of MoS2, which is 200 times faster than in the absence of MoS2. The limit of detection (LOD) of the Cd2+ is as low as 7.2 × 10-8 mol/L. The binding behavior between the cationic TMPyP and MoS2 nanosheets was corroborated by molecular dynamics simulation and various control experiments. The results demonstrated that electrostatic interaction was the main force for driving TMPyP enriching around the MoS2 surface, resulting in an accelerated complexation of Cd2+ and TMPyP. Moreover, MoS2@TMPyP nanocomposite can also be used for removing of Cd2+ in water. The removal efficiency (RF) of the MoS2@TMPyP can reach to 91% for high concentrations of Cd2+. This work provides a new insight into detection and removal of Cd2+ ions in water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA