Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Int J Surg ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38626431

RESUMO

BACKGROUND: The prognostic value of carbohydrate antigen 19-9 (CA19-9) is known to be affected by elevated bilirubin levels in patients with gallbladder carcinoma (GBC). The clinical significance of changes in the ratio of CA19-9 levels to total bilirubin (TB) levels in patients with GBC after curative-intent resection remains unknown. The aim of this study was to determine the prognostic value of changes in preoperative and postoperative CA19-9/TB ratio in these patients. METHODS: Prospectively colleced data on consecutive patients who underwent curative-intent resection for GBC between January 2015 and December 2020 stored in a multicenter database from 10 hospitals were analysed in this retrospective cohort study. Based on the adjusted CA19-9 defined as the ratio of CA19-9 to TB, and using 2×103 U/µmol as the upper normal value, patients were divided into a normal group (with normal preoperative and postoperative adjusted CA19-9), a normalization group (with abnormal preoperative but normal postoperative adjusted CA19-9), and a non-normalization group (with abnormal postoperative adjusted CA19-9). The primary outcomes were overall survival (OS) and recurrence-free survival (RFS). The log-rank test was used to compare OS and RFS among the groups. The Cox regression model was used to determine factors independently associated with OS and RFS. RESULTS: The normal group (n=179 patients) and the normalization group (n=73 patients) had better OS and RFS than the non-normalization group (n=65 patients) (the 3-year OS rates 72.0%, 58.4% and 24.2%, respectively; the RFS rates 54.5%, 25.5% and 11.8%, respectively; both P<0.001). There were no significant differences between the normal and the normalization groups in OS and RFS (OS, P=0.255; RFS, P=0.130). Cox regression analysis confirmed that the non-normalization group was independently associated with worse OS and RFS. Subgroup analysis revealed that the non-normalization group of patients who received adjuvant therapy had significantly improved OS and RFS as compared to those who did not receive adjuvant therapy (OS, P=0.025; RFS, P=0.003). CONCLUSIONS: Patients with GBC who underwent curative-intent surgical resection with postoperative abnormal levels of adjusted CA19-9 (the CA19-9/TB ratio) were associated with poorer long-term survival outcomes. Adjuvant therapy after surgery improved the long-term outcomes of these patients.

2.
Acta Neurochir (Wien) ; 166(1): 72, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329556

RESUMO

PURPOSE: Medulloblastoma is the most common childhood malignant brain tumor and is a leading cause of cancer-related death in children. Recent transcriptional studies have shown that medulloblastomas comprise at least four molecular subgroups, each with distinct demographics, genetics, and clinical outcomes. Medulloblastoma subtyping has become critical for subgroup-specific therapies. The use of gene expression assays to determine the molecular subgroup of clinical specimens is a long-awaited application of molecular biology for this pediatric cancer. METHODS: In the current study, we established a medulloblastoma transcriptome database of 460 samples retrieved from three published datasets (GSE21140, GSE37382, and GSE37418). With this database, we identified a 23-gene signature that is significantly associated with the medulloblastoma subgroups and achieved a classification accuracy of 95.2%. RESULTS: The 23-gene signature was further validated in a long-term cohort of 142 Chinese medulloblastoma patients. The 23-gene signature classified 21 patients as WNT (15%), 41 as SHH (29%), 16 as Group 3 (11%), and 64 as Group 4 (45%). For patients of WNT, SHH, Group 3, and Group 4, 5-year overall-survival rate reached 80%, 62%, 27%, and 47%, respectively (p < 0.0001), meanwhile 5-year progression-free survival reached 80%, 52%, 27%, and 45%, respectively (p < 0.0001). Besides, SHH/TP53-mutant tumors were associated with worse prognosis compared with SHH/TP53 wild-type tumors and other subgroups. We demonstrated that subgroup assignments by the 23-gene signature and Northcott's NanoString assay were highly comparable with a concordance rate of 96.4%. CONCLUSIONS: In conclusion, we present a novel gene signature that is capable of accurately and reliably assigning FFPE medulloblastoma samples to their molecular subgroup, which may serve as an auxiliary tool for medulloblastoma subtyping in the clinic. Future incorporation of this gene signature into prospective clinical trials is warranted to further evaluate its clinical.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Humanos , Criança , Meduloblastoma/diagnóstico , Meduloblastoma/genética , Transcriptoma/genética , Estudos Prospectivos , Neoplasias Cerebelares/genética , China
5.
Microb Cell Fact ; 22(1): 215, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37853389

RESUMO

BACKGROUND: Seleno-methylselenocysteine (SeMCys) is an effective component of selenium supplementation with anti-carcinogenic potential that can ameliorate neuropathology and cognitive deficits. In a previous study, a SeMCys producing strain of Bacillus subtilis GBACB was generated by releasing feedback inhibition by overexpression of cysteine-insensitive serine O-acetyltransferase, enhancing the synthesis of S-adenosylmethionine as methyl donor by overexpression of S-adenosylmethionine synthetase, and expressing heterologous selenocysteine methyltransferase. In this study, we aimed to improve GBACB SeMCys production by synthesizing methylmethionine as a donor to methylate selenocysteine and by inhibiting the precursor degradation pathway. RESULTS: First, the performance of three methionine S-methyltransferases that provide methylmethionine as a methyl donor for SeMCys production was determined. Integration of the NmMmt gene into GBACB improved SeMCys production from 20.7 to 687.4 µg/L. Next, the major routes for the degradation of selenocysteine, which is the precursor of SeMCys, were revealed by comparing selenocysteine hyper-accumulating and non-producing strains at the transcriptional level. The iscSB knockout strain doubled SeMCys production. Moreover, deleting sdaA, which is responsible for the degradation of serine as a precursor of selenocysteine, enhanced SeMCys production to 4120.3 µg/L. Finally, the culture conditions in the flasks were optimized. The strain was tolerant to higher selenite content in the liquid medium and the titer of SeMCys reached 7.5 mg/L. CONCLUSIONS: The significance of methylmethionine as a methyl donor for SeMCys production in B. subtilis is reported, and enhanced precursor supply facilitates SeMCys synthesis. The results represent the highest SeMCys production to date and provide insight into Se metabolism.


Assuntos
Selênio , Vitamina U , Selenocisteína/farmacologia , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Cisteína/metabolismo , Selênio/metabolismo
8.
World J Gastrointest Oncol ; 15(6): 1036-1050, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37389112

RESUMO

BACKGROUND: Perihilar cholangiocarcinoma (pCCA) has a poor prognosis and urgently needs a better predictive method. The predictive value of the age-adjusted Charlson comorbidity index (ACCI) for the long-term prognosis of patients with multiple malignancies was recently reported. However, pCCA is one of the most surgically difficult gastrointestinal tumors with the poorest prognosis, and the value of the ACCI for the prognosis of pCCA patients after curative resection is unclear. AIM: To evaluate the prognostic value of the ACCI and to design an online clinical model for pCCA patients. METHODS: Consecutive pCCA patients after curative resection between 2010 and 2019 were enrolled from a multicenter database. The patients were randomly assigned 3:1 to training and validation cohorts. In the training and validation cohorts, all patients were divided into low-, moderate-, and high-ACCI groups. Kaplan-Meier curves were used to determine the impact of the ACCI on overall survival (OS) for pCCA patients, and multivariate Cox regression analysis was used to determine the independent risk factors affecting OS. An online clinical model based on the ACCI was developed and validated. The concordance index (C-index), calibration curve, and receiver operating characteristic (ROC) curve were used to evaluate the predictive performance and fit of this model. RESULTS: A total of 325 patients were included. There were 244 patients in the training cohort and 81 patients in the validation cohort. In the training cohort, 116, 91 and 37 patients were classified into the low-, moderate- and high-ACCI groups. The Kaplan-Meier curves showed that patients in the moderate- and high-ACCI groups had worse survival rates than those in the low-ACCI group. Multivariable analysis revealed that moderate and high ACCI scores were independently associated with OS in pCCA patients after curative resection. In addition, an online clinical model was developed that had ideal C-indexes of 0.725 and 0.675 for predicting OS in the training and validation cohorts. The calibration curve and ROC curve indicated that the model had a good fit and prediction performance. CONCLUSION: A high ACCI score may predict poor long-term survival in pCCA patients after curative resection. High-risk patients screened by the ACCI-based model should be given more clinical attention in terms of the management of comorbidities and postoperative follow-up.

10.
Appl Microbiol Biotechnol ; 107(9): 2843-2854, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36941436

RESUMO

Seleno-methylselenocysteine (SeMCys) is an effective component for selenium supplementation with anti-carcinogenic potential and can ameliorate neuropathology and cognitive deficits. In this study, we aimed to engineer Bacillus subtilis 168 for the microbial production of SeMCys. First, the accumulation of intracellular selenocysteine (SeCys) as the precursor of SeMCys was enhanced through overexpression of serine O-acetyltransferase, which was desensitized against feedback inhibition by cysteine. Next, the S-adenosylmethionine (SAM) synthetic pathway was optimized to improve methyl donor availability through expression of S-adenosylmethionine synthetase. Further, SeMCys was successfully produced through expression of the selenocysteine methyltransferase in SeCys and SAM-producing strain. The increased expression level of selenocysteine methyltransferase benefited the SeMCys production. Finally, all the heterologous genes were integrated into the genome of B. subtilis, and the strain produced SeMCys at a titer of 18.4 µg/L in fed-batch culture. This is the first report on the metabolic engineering of B. subtilis for microbial production of SeMCys and provides a good starting point for future pathway engineering to achieve the industrial-grade production of SeMCys. KEY POINTS: • Expression of the feedback-insensitive serine O-acetyltransferase provided B. subtilis the ability of accumulating SeCys. • SAM production was enhanced through expressing S-adenosylmethionine synthetase in B. subtilis. • Expression of selenocysteine methyltransferase in SeCys and SAM-accumulating strain facilitated SeMCys production.


Assuntos
Bacillus subtilis , Selenocisteína , Selenocisteína/genética , Selenocisteína/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Serina O-Acetiltransferase/metabolismo , Metionina Adenosiltransferase/metabolismo , Engenharia Metabólica , S-Adenosilmetionina/metabolismo
11.
Molecules ; 28(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36770725

RESUMO

In the present study, lysozyme was purified by the following multi-step methodology: salt (ammonium sulfate) precipitation, dialysis, and ultrafiltration. The lysozyme potential was measured by enzymatic activity after each purification step. However, after ultrafiltration, the resulting material was considered extra purified. It was concentrated in an ultrafiltration centrifuge tube, and the resulting protein/lysozyme was used to determine its bactericidal potential against five bacterial strains, including three gram-positive (Bacillus subtilis 168, Micrococcus luteus, and Bacillus cereus) and two gram-negative (Salmonella typhimurium and Pseudomonas aeruginosa) strains. The results of ZOI and MIC/MBC showed that lysozyme had a higher antimicrobial activity against gram-positive than gram-negative bacterial strains. The results of the antibacterial activity of lysozyme were compared with those of ciprofloxacin (antibiotic). For this purpose, two indices were applied in the present study: antimicrobial index (AMI) and percent activity index (PAI). It was found that the purified lysozyme had a higher antibacterial activity against Bacillus cereus (AMI/PAI; 1.01/101) and Bacillus subtilis 168 (AMI/PAI; 1.03/103), compared to the antibiotic (ciprofloxacin) used in this study. Atomic force microscopy (AFM) was used to determine the bactericidal action of the lysozyme on the bacterial cell. The purified protein was further processed by gel column chromatography and the eluate was collected, its enzymatic activity was 21.93 U/mL, while the eluate was processed by native-PAGE. By this analysis, the un-denatured protein with enzymatic activity of 40.9 U/mL was obtained. This step shows that the protein (lysozyme) has an even higher enzymatic potential. To determine the specific peptides (in lysozyme) that may cause the bactericidal potential and cell lytic/enzymatic activity, the isolated protein (lysozyme) was further processed by the SDS-PAGE technique. SDS-PAGE analysis revealed different bands with sizes of 34 kDa, 24 kDa, and 10 kDa, respectively. To determine the chemical composition of the peptides, the bands (from SDS-PAGE) were cut, enzymatically digested, desalted, and analyzed by LC-MS (liquid chromatography-mass spectrometry). LC-MS analysis showed that the purified lysozyme had the following composition: the number of proteins in the sample was 56, the number of peptides was 124, and the number of PSMs (peptide spectrum matches) was 309. Among them, two peptides related to lysozyme and bactericidal activities were identified as: A0A1Q9G213 (N-acetylmuramoyl-L-alanine amidase) and A0A1Q9FRD3 (D-alanyl-D-alanine carboxypeptidase). The corresponding protein sequence and nucleic acid sequence were determined by comparison with the database.


Assuntos
Anti-Infecciosos , Bacillus , Muramidase/farmacologia , Muramidase/química , Antibacterianos/química , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Diálise Renal , Anti-Infecciosos/farmacologia , Peptídeos/farmacologia , Bacillus subtilis/metabolismo , Cromatografia em Gel , Bacillus cereus , Ciprofloxacina/farmacologia , Testes de Sensibilidade Microbiana
16.
Antioxidants (Basel) ; 11(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36290639

RESUMO

Selenium nanoparticles (SeNPs) can be produced by biogenic, physical, and chemical processes. The physical and chemical processes have hazardous effects. However, biogenic synthesis (by microorganisms) is an eco-friendly and economical technique that is non-toxic to human and animal health. The mechanism for biogenic SeNPs from microorganisms is still not well understood. Over the past two decades, extensive research has been conducted on the nutritional and therapeutic applications of biogenic SeNPs. The research revealed that biogenic SeNPs are considered novel competitors in the pharmaceutical and food industries, as they have been shown to be virtually non-toxic when used in medical practice and as dietary supplements and release only trace amounts of Se ions when ingested. Various pathogenic and probiotic/nonpathogenic bacteria are used for the biogenic synthesis of SeNPs. However, in the case of biosynthesis by pathogenic bacteria, extraction and purification techniques are required for further useful applications of these biogenic SeNPs. This review focuses on the applications of SeNPs (derived from probiotic/nonpathogenic organisms) as promising anticancer agents. This review describes that SeNPs derived from probiotic/nonpathogenic organisms are considered safe for human consumption. These biogenic SeNPs reduce oxidative stress in the human body and have also been shown to be effective against breast, prostate, lung, liver, and colon cancers. This review provides helpful information on the safe use of biogenic SeNPs and their economic importance for dietary and therapeutic purposes, especially as anticancer agents.

17.
Ann Transl Med ; 10(16): 880, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36111036

RESUMO

Background: Managements for refractory proficient mismatch repair (pMMR) or microsatellite stable (MSS) metastatic colorectal cancer (mCRC) were still challenging and controversial. Our study sought to investigate the efficacy and safety of anti-programmed cell death protein 1 (anti-PD-1) antibodies plus regorafenib in refractory pMMR/MSS mCRC. Methods: We retrospectively analyzed the efficacy and safety of 103 pMMR/MSS mCRC patients treated with at least one dose of anti-PD-1 antibodies plus regorafenib (80 mg once daily for 21 days on/7 days off 28 days as a cycle) between July 2019 and June 2021 at the Hunan Cancer Hospital. All patients had previously received at least second-line treatment. The patients were evaluated by computed tomography every 2 or 3 treatment cycles until progression or being lost to follow-up. The primary end point was overall survival (OS). Results: The median follow-up period was 5.30 (range, 0.50-22.50) months. The median OS (mOS) and medical progression-free survival (mPFS) were 8.40 and 2.50 months for the entire cohort, respectively. The mOS and mPFS were 16.07 and 3.10 months in patients who received >1 cycle of anti-PD-1 antibodies and regorafenib (n=55), which were significantly longer than 4.37 and 1.11 months in those received only 1 cycle (n=48) (both P<0.001, respectively). The Cox multivariate regression analysis demonstrated that the number of cycles of regorafenib plus PD-1 and previously undergone surgery were independent risk factors for OS, whereas Sintilimab was confirmed to have a significant better PFS compared to other anti-PD-1 antibodies. Of the 55 patients who were evaluated, 7 were diagnosed with a partial response (PR) and another 16 were diagnosed with stable disease (SD), but no patient showed a complete response (CR). Thus, the objective response rate (ORR) was 12.7% and the disease control rate was 41.8%. Treatment-related adverse events (TRAEs) of grade 3 or higher occurred in 13 (12.6%) patients. Conclusions: The combination of regorafenib plus anti-PD-1 antibodies has a manageable safety profile and may improve prognosis for pMMR/MSS mCRC patients, especially those who received >1 cycle. Compared to the other anti-PD-1 antibodies, sintilimab may be more efficacious; however, further prospective studies need to be conducted to confirm our findings.

18.
Eur J Med Chem ; 236: 114313, 2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35390712

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive, high recurrence and metastatic breast cancer subtype. There are few safe and effective therapeutic drugs for treatment of TNBC. The marine natural product MHO7 has been determined to be a potential antitumor agent. However, its moderate activity and complex structure hampered its clinical application. In this study, a series of novel derivatives with modification on C24 of MHO7 were first synthesized. Some of the analogues were significantly more potent than MHO7 against all selected breast cancer cell lines. Among them, compound 4m had the best activity, and its IC50 value against TNBC was up to 0.51 µM. A whole-genome transcriptomic analysis shown that the mechanism of compound 4m against TNBC cells was similar with that of parent compound MHO7. Subsequent cellular mechanism studies showed that compound 4m could induce apoptosis of MDA-MB-231 cells through mitochondria pathway and cause G1 phase arrest. Moreover, 4m could disrupt the expressions of MAPK/Akt pathway-associated proteins (p-p38 and p-Akt) and remarkably increase the ratio of Bax to Bcl-2 and activate cleaved caspase 3/9/PARP. Importantly, 4m could influence the expression of Smad 7, and p-Smad 3 to inhibit TNBC cells metastasis. Stability assays in rat plasma and liver microsomes indicated that 4m still have room for further optimization. And the results of the online molinspiration software predicted that 4m has desirable physicochemical properties but some properties still have violation from the Lipinski rule of five. Overall, the modification on C24 of MHO7 was a promising way for developing novel anti-TNBC agents with considerable potential for optimization.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Células MCF-7 , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Relação Estrutura-Atividade , Neoplasias de Mama Triplo Negativas/patologia
19.
Front Oncol ; 12: 1104810, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36686802

RESUMO

Background & Aims: Tumor-associated chronic inflammation has been determined to play a crucial role in tumor progression, angiogenesis and immunosuppression. The objective of this study was to assess the prognostic value of the neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) in perihilar cholangiocarcinoma (pCCA) patients following curative resection. Methods: Consecutive pCCA patients following curative resection at 3 Chinese hospitals between 2014 and 2018 were included. The NLR was defined as the ratio of neutrophil count to lymphocyte count. PLR was defined as the ratio of platelet count to lymphocyte count. The optimal cutoff values of preoperative NLR and PLR were determined according to receiver operating characteristic (ROC) curves for the prediction of 1-year overall survival (OS), and all patients were divided into high- and low-risk groups. Kaplan-Meier curves and Cox regression models were used to investigate the relationship between values of NLR and PLR and values of OS and recurrence-free survival (RFS) in pCCA patients. The usefulness of NLR and PLR in predicting OS and RFS was evaluated by time-dependent ROC curves. Results: A total of 333 patients were included. According to the ROC curve for the prediction of 1-year OS, the optimal cutoff values of preoperative NLR and PLR were 1.68 and 113.1, respectively, and all patients were divided into high- and low-risk groups. The 5-year survival rates in the low-NLR (<1.68) and low-PLR groups (<113.1) were 30.1% and 29.4%, respectively, which were significantly higher than the rates of 14.9% and 3.3% in the high-NLR group (≥1.68) and high-PLR group (≥113.1), respectively. In multivariate analysis, high NLR and high PLR were independently associated with poor OS and RFS for pCCA patients. The time-dependent ROC curve revealed that both NLR and PLR were ideally useful in predicting OS and RFS for pCCA patients. Conclusions: This study found that both NLR and PLR could be used to effectively predict long-term survival in patients with pCCA who underwent curative resection.

20.
Dalton Trans ; 50(48): 18194-18201, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34860227

RESUMO

Four structurally diverse coordination polymers 1-4 (CP1-CP4) were designed and constructed from Cd(II) ions and various carboxyl ligands (H2oba, 4,4'-oxydibenzoic acid; H2bpa, (E)-4,4'-(ethene-1,2-diyl)dibenzoic acid; H2pbda, 4,4'-((1,3-phenylenebis(methylene))bis(oxy))dibenzoic acid) and the alkene containing ligand (CH3-bpeb, 4,4'-((1E,1'E)-(2,5-dimethyl-1,4-phenylene)bis(ethene-2,1-diyl))dipyridine). CP1-CP4 possess Cd2 binuclear secondary building units (SBUs). The geometry of the dicarboxylate ligands and the reaction conditions determined the final structure with a variety of motifs. CP1 possesses an interdigitated 2D structure, while CP2 consists of a 1D channel-like motif with isolated CH3-bpeb molecules embedded in the channels. The solid-state structure of CP3 consists of two unique layers interpenetrated to form a 2D + 2D → 2D polycatenated backbone, while a 1D channel-like motif filled by isolated CH3-bpeb molecules was observed for CP4. In all four coordination polymers pairs of CH3-bpeb molecules were bound or encapsulated by the Cd2 secondary building units at an appropriate distance and orientation for solid-state [2 + 2] photodimerization of one pair of CC bonds. Desolvation of CP3 with heat resulted in a decrease in solid-state fluorescence and a slowing of the rate of solid-state photodimerization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA