Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Mol Biol (Noisy-le-grand) ; 67(4): 321-327, 2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35809273

RESUMO

Breast cancer is the most common cancer among women in the world. The phosphatidylinositol 3-Kinase (PI3k), which regulates various cellular signaling pathways, is often elevated in human cancers. This study aimed to evaluate the expression of the PI3k gene in breast cancer. In this case-control study, 40 paraffin-embedded tissues of breast cancer and 40 adjacent non-tumor tissues were examined. After total RNA extraction and cDNA synthesis, the relative expression of the gene was obtained using the real-time-PCR method and evaluated by the 2-ΔΔCT method. Also, the association of gene expression with clinical factors and survival rate was investigated. Data analysis was performed by SPSS statistical software (version 22), t-test, and ANOVA. A p-value of less than 0.05 was considered significant. The results showed that PI3k expression was significantly increased in breast tumor tissues compared to non-tumor tissues (p = 0001). Consistent with these results, PI3k expression was associated with metastasis (p = 0.008) and high tumor grade (p = 0.01). In addition, increasing PI3k expression decreased overall survival compared to its low expression (p = 0.03). In general, PI3k plays a tumor-enhancing role in the progression of breast cancer. In addition, increased PI3k expression is associated with metastasis and poor prognosis of cancer, so that PI3k may be useful in the diagnosis, treatment, and prognosis of people with the disease. However, further investigation is needed to substantiate this claim.


Assuntos
Neoplasias da Mama , Fosfatidilinositol 3-Quinase , Neoplasias da Mama/patologia , Estudos de Casos e Controles , Proliferação de Células , Feminino , Expressão Gênica , Humanos , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
2.
Contrast Media Mol Imaging ; 2021: 1933706, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34354550

RESUMO

To explore the performance of improved watershed algorithm in processing magnetic resonance imaging (MRI) images and the effect of the processed images on the treatment of lumbar brucellar spondylitis (BS) with abscess by the posterior approach, the watershed algorithm was improved by adding constraints such as noise reduction and regional area attribute. 50 patients with abscessed lumbar disc herniation admitted to the hospital from January 2018 to January 2019 were selected, and all of them were examined by MRI. They were rolled into two groups in random. The treatment group (n = 25) accepted surgery with the aid of MRI images processed by the improved watershed algorithm, and the control group (Ctrl group) (n = 25) accepted surgery with the aid of unprocessed MRI images. The improved watershed algorithm can accurately segment the spine, and the segmentation results were relatively excellent. In contrast with the unprocessed MRI image, that processed by the improved watershed algorithm had a positive effect on the operation. In contrast with the Ctrl group, the visual analogue scale pain score (VAS), oxygen desaturation index (ODI), erythrocyte sedimentation rate (ESR), and high sensitivity C-reactive protein (CRP) were obviously lower (p < 0.05). The improved watershed algorithm proposed performs better in MRI image processing and can effectively enhance the resolution of MRI images. At the same time, the posterior approach has a good effect in the treatment of lumbar BS with abscess and is worthy of clinical promotion.


Assuntos
Abscesso/complicações , Algoritmos , Brucella/isolamento & purificação , Brucelose/complicações , Imageamento por Ressonância Magnética/métodos , Espondilite/cirurgia , Adulto , Idoso , Brucelose/microbiologia , Estudos de Casos e Controles , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Espondilite/etiologia , Espondilite/patologia
3.
Cell Rep ; 33(5): 108329, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33147468

RESUMO

The regulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) trafficking affects multiple brain functions, such as learning and memory. We have previously shown that Thorase plays an important role in the internalization of AMPARs from the synaptic membrane. Here, we show that N-methyl-d-aspartate receptor (NMDAR) activation leads to increased S-nitrosylation of Thorase and N-ethylmaleimide-sensitive factor (NSF). S-nitrosylation of Thorase stabilizes Thorase-AMPAR complexes and enhances the internalization of AMPAR and interaction with protein-interacting C kinase 1 (PICK1). S-nitrosylated NSF is dependent on the S-nitrosylation of Thorase via trans-nitrosylation, which modulates the surface insertion of AMPARs. In the presence of the S-nitrosylation-deficient C137L Thorase mutant, AMPAR trafficking, long-term potentiation, and long-term depression are impaired. Overall, our data suggest that both S-nitrosylation and interactions of Thorase and NSF/PICK1 are required to modulate AMPAR-mediated synaptic plasticity. This study provides critical information that elucidates the mechanism underlying Thorase and NSF-mediated trafficking of AMPAR complexes.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Membrana Celular/metabolismo , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Receptores de AMPA/metabolismo , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Ciclo Celular/metabolismo , Cisteína/metabolismo , Endocitose/efeitos dos fármacos , Glutationa/metabolismo , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , N-Metilaspartato/farmacologia , Plasticidade Neuronal , Óxido Nítrico/metabolismo , Nitrosação , Ligação Proteica , Multimerização Proteica , Transporte Proteico , S-Nitrosoglutationa/metabolismo
4.
Bio Protoc ; 10(17): e3746, 2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-33659406

RESUMO

Human neuron transplantation offers novel opportunities for modeling human neurologic diseases and potentially replacement therapies. However, the complex structure of the human cerebral cortex, which is organized in six layers with tightly interconnected excitatory and inhibitory neuronal networks, presents significant challenges for in vivo transplantation techniques to obtain a balanced, functional and homeostatically stable neuronal network. Here, we present a protocol to introduce human induced pluripotent stem cell (hiPSC)-derived neural progenitors to rat brains. Using this approach, hiPSC-derived neurons structurally integrate into the rat forebrain, exhibit electrophysiological characteristics, including firing, excitatory and inhibitory synaptic activity, and establish neuronal connectivity with the host circuitry.

5.
eNeuro ; 6(4)2019.
Artigo em Inglês | MEDLINE | ID: mdl-31413152

RESUMO

The human cerebral cortex is a complex structure with tightly interconnected excitatory and inhibitory neuronal networks. In order to study human cortical function, we recently developed a method to generate cortical neurons from human induced pluripotent stem cells (hiPSCs) that form both excitatory and inhibitory neuronal networks resembling the composition of the human cortex. These cultures and organoids recapitulate neuronal populations representative of the six cortical layers and a balanced excitatory and inhibitory network that is functional and homeostatically stable. To determine whether hiPSC-derived neurons can integrate and retain physiologic activities in vivo, we labeled hiPSCs with red fluorescent protein (RFP) and introduced hiPSC-derived neural progenitors to rat brains. Efficient neural induction, followed by differentiation resulted in a RFP+ neural population with traits of forebrain identity and a balanced synaptic activity composed of both excitatory neurons and inhibitory interneurons. Ten weeks after transplantation, grafted cells structurally integrated into the rat forebrain. Remarkably, these hiPSC-derived neurons were able to fire, exhibiting both excitatory and inhibitory postsynaptic currents, which culminates in the establishment of neuronal connectivity with the host circuitry. This study demonstrates that neural progenitors derived from hiPSCs can differentiate into functional cortical neurons and can participate in neural network activity through functional synaptic integration in vivo, thereby contributing to information processing.


Assuntos
Potenciais Pós-Sinápticos Excitadores , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Pluripotentes Induzidas/transplante , Potenciais Pós-Sinápticos Inibidores , Neurônios/fisiologia , Prosencéfalo/fisiologia , Animais , Animais Recém-Nascidos , Linhagem Celular , Feminino , Humanos , Interneurônios/fisiologia , Masculino , Ratos Nus
6.
Proc Natl Acad Sci U S A ; 115(4): 798-803, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29311330

RESUMO

Accumulating evidence suggests that α-synuclein (α-syn) occurs physiologically as a helically folded tetramer that resists aggregation. However, the mechanisms underlying the regulation of formation of α-syn tetramers are still mostly unknown. Cellular membrane lipids are thought to play an important role in the regulation of α-syn tetramer formation. Since glucocerebrosidase 1 (GBA1) deficiency contributes to the aggregation of α-syn and leads to changes in neuronal glycosphingolipids (GSLs) including gangliosides, we hypothesized that GBA1 deficiency may affect the formation of α-syn tetramers. Here, we show that accumulation of GSLs due to GBA1 deficiency decreases α-syn tetramers and related multimers and increases α-syn monomers in CRISPR-GBA1 knockout (KO) SH-SY5Y cells. Moreover, α-syn tetramers and related multimers are decreased in N370S GBA1 Parkinson's disease (PD) induced pluripotent stem cell (iPSC)-derived human dopaminergic (hDA) neurons and murine neurons carrying the heterozygous L444P GBA1 mutation. Treatment with miglustat to reduce GSL accumulation and overexpression of GBA1 to augment GBA1 activity reverse the destabilization of α-syn tetramers and protect against α-syn preformed fibril-induced toxicity in hDA neurons. Taken together, these studies provide mechanistic insights into how GBA1 regulates the transition from monomeric α-syn to α-syn tetramers and multimers and suggest unique therapeutic opportunities for PD and dementia with Lewy bodies.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Glucosilceramidase/deficiência , Glicoesfingolipídeos/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , 1-Desoxinojirimicina/análogos & derivados , Linhagem Celular Tumoral , Glucosilceramidase/genética , Humanos , Multimerização Proteica
7.
Sci Transl Med ; 9(420)2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29237760

RESUMO

The AAA+ adenosine triphosphatase (ATPase) Thorase plays a critical role in controlling synaptic plasticity by regulating the expression of surface α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). Bidirectional sequencing of exons of ATAD1, the gene encoding Thorase, in a cohort of patients with schizophrenia and healthy controls revealed rare Thorase variants. These variants caused defects in glutamatergic signaling by impairing AMPAR internalization and recycling in mouse primary cortical neurons. This contributed to increased surface expression of the AMPAR subunit GluA2 and enhanced synaptic transmission. Heterozygous Thorase-deficient mice engineered to express these Thorase variants showed altered synaptic transmission and several behavioral deficits compared to heterozygous Thorase-deficient mice expressing wild-type Thorase. These behavioral impairments were rescued by the competitive AMPAR antagonist Perampanel, a U.S. Food and Drug Administration-approved drug. These findings suggest that Perampanel may be useful for treating disorders involving compromised AMPAR-mediated glutamatergic neurotransmission.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/genética , Variação Genética , Glutamatos/metabolismo , Piridonas/farmacologia , Transmissão Sináptica/efeitos dos fármacos , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Comportamento Animal , Células Cultivadas , Córtex Cerebral/patologia , Endocitose/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Heterozigoto , Humanos , Memória/efeitos dos fármacos , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Nitrilas , Multimerização Proteica , Comportamento Social
8.
Sci Transl Med ; 8(333): 333ra48, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-27053772

RESUMO

Translating neuroprotective treatments from discovery in cell and animal models to the clinic has proven challenging. To reduce the gap between basic studies of neurotoxicity and neuroprotection and clinically relevant therapies, we developed a human cortical neuron culture system from human embryonic stem cells or human inducible pluripotent stem cells that generated both excitatory and inhibitory neuronal networks resembling the composition of the human cortex. This methodology used timed administration of retinoic acid to FOXG1(+) neural precursor cells leading to differentiation of neuronal populations representative of the six cortical layers with both excitatory and inhibitory neuronal networks that were functional and homeostatically stable. In human cortical neuronal cultures, excitotoxicity or ischemia due to oxygen and glucose deprivation led to cell death that was dependent on N-methyl-D-aspartate (NMDA) receptors, nitric oxide (NO), and poly(ADP-ribose) polymerase (PARP) (a cell death pathway called parthanatos that is distinct from apoptosis, necroptosis, and other forms of cell death). Neuronal cell death was attenuated by PARP inhibitors that are currently in clinical trials for cancer treatment. This culture system provides a new platform for the study of human cortical neurotoxicity and suggests that PARP inhibitors may be useful for ameliorating excitotoxic and ischemic cell death in human neurons.


Assuntos
Córtex Cerebral/citologia , Interneurônios/citologia , Inibição Neural/efeitos dos fármacos , Neurotoxinas/toxicidade , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Separação Celular , Células Cultivadas , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Glucose/deficiência , Proteínas Hedgehog/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Modelos Biológicos , N-Metilaspartato/farmacologia , Rede Nervosa/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Óxido Nítrico/metabolismo , Oxigênio , Transdução de Sinais/efeitos dos fármacos , Tretinoína/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA