Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 179: 106-120, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38561072

RESUMO

The reconstruction of posterior lamellar eyelid defects remains a significant challenge in clinical practice due to anatomical complexity, specialized function, and aesthetic concerns. The ideal substitute for the posterior lamellar should replicate the native tarsoconjunctival tissue, providing both mechanical support for the eyelids and a smooth surface for the globe after implantation. In this study, we present an innovative approach utilizing tissue-engineered cartilage (TEC) grafts generated from rabbit auricular chondrocytes and a commercialized type I collagen sponge to reconstruct critical-sized posterior lamellar defects in rabbits. The TEC grafts demonstrated remarkable mechanical strength and maintained a stable cartilaginous phenotype both in vitro and at 6 months post-implantation in immunodeficient mice. When employed as autografts to reconstruct tarsal plate defects in rabbits' upper eyelids, these TEC grafts successfully restored normal eyelid morphology, facilitated smooth eyelid movement, and preserved the histological structure of the conjunctival epithelium. When applied in bilayered tarsoconjunctival defect reconstruction, these TEC grafts not only maintained the normal contour of the upper eyelid but also supported conjunctival epithelial cell migration and growth from the defect margin towards the centre. These findings highlight that auricular chondrocyte-based TEC grafts hold great promise as potential candidates for clinical posterior lamellar reconstruction. STATEMENT OF SIGNIFICANCE: The complex structure and function of the posterior lamellar eyelid continue to be significant challenges for clinical reconstructive surgeries. In this study, we utilized autologous auricular chondrocyte-based TEC grafts for posterior lamellar eyelid reconstruction in a preclinical rabbit model. The TEC grafts exhibited native cartilaginous histomorphology and comparable mechanical strength to those of the native human tarsal plate. In rabbit models with either tarsal plate defects alone or bilayered tarsoconjunctival defects, TEC grafts successfully restored the normal eyelid contour and movement, as well as supported preservation and growth of conjunctival epithelium. This is the first study to demonstrate autologous TEC grafts can be employed for repairing tarsal plate defects, thereby offering an alternative therapeutic approach for treating posterior lamellar defects in clinic settings.


Assuntos
Pálpebras , Animais , Coelhos , Procedimentos de Cirurgia Plástica/métodos , Engenharia Tecidual/métodos , Cartilagem , Transplante Autólogo , Condrócitos/transplante , Condrócitos/citologia
2.
Metabolism ; 152: 155786, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38211697

RESUMO

Diabetes presents a pressing healthcare crisis, necessitating innovative solutions. Organoid technologies have rapidly advanced, leading to the emergence of bioengineering islet organoids as an unlimited source of insulin-producing cells for treating insulin-dependent diabetes. This advancement surpasses the need for cadaveric islet transplantation. However, clinical translation of this approach faces two major limitations: immature endocrine function and the absence of a perfusable vasculature compared to primary human islets. In this review, we summarize the latest developments in bioengineering functional islet organoids in vitro and promoting vascularization of organoid grafts before and after transplantation. We highlight the crucial roles of the vasculature in ensuring long-term survival, maturation, and functionality of islet organoids. Additionally, we discuss key considerations that must be addressed before clinical translation of islet organoid-based therapy, including functional immaturity, undesired heterogeneity, and potential tumorigenic risks.


Assuntos
Diabetes Mellitus Tipo 1 , Insulinas , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Humanos , Organoides/irrigação sanguínea , Diabetes Mellitus Tipo 1/terapia , Bioengenharia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA