Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Pain Res ; 17: 1571-1581, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699068

RESUMO

Background: Peripheral neuropathy (PN) is a prevalent complication of multiple myeloma (MM), due to the disease itself or its treatment. Despite extensive research, the optimal treatment for multiple myeloma peripheral neuropathy (MMPN) remains unclear. Clinical practice has shown the potential efficacy of acupuncture in managing MMPN. This study aimed to conduct a comprehensive analysis of the literature to assess the effectiveness and safety of acupuncture as a treatment for MMPN. Methods: The PubMed, Web of Science, MEDLINE, Cochrane Library, and Embase databases were comprehensively searched from inception to November 1, 2023 to identify relevant studies pertaining to the use of acupuncture to treat MMPN. Results: A total of five studies, encompassing 97 patients diagnosed with drug-related PN, were ultimately included in this analysis. The literature lacks any reports pertaining to the utilization of acupuncture for disease-related PN. ST36, LI4, SP6, and EX-LE-10 were found to be the most frequently chosen acupoints. Following acupuncture treatment, there was a consistent reduction in scores on the Visual Analogue Scale (VAS), Neuropathic Pain Scale (NPS), Brief Pain Inventory-Short Form (BPI-SF), and Functional Assessment of Cancer Therapy/Gynecologic Oncology Group-Neurotoxicity (FACT/GOG-Ntx) among MMPN patients. The results of Nerve Conduction Velocity (NCV) tests yielded conflicting results. No severe adverse effects were reported. Conclusion: The use of acupuncture for disease-related PN has not been studied to date. Acupuncture is safe for drug-related PN and is helpful for relieving pain. But uncertainty exists regarding the efficacy of this approach because there is substantial heterogeneity with respect to acupuncture treatment regimens, and more high-quality studies on this topic are warranted.

2.
Inflammation ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761249

RESUMO

Uveitis is an autoimmune eye disease that can be involved in the entire body and is one of the leading causes of blindness. Therefore, comprehending the mechanisms underlying the development and regulation of ocular immune responses in uveitis is crucial for designing effective therapeutic interventions. In this study, we investigated how RBPJ regulates macrophage polarization in uveitis. We demonstrated that targeted RBPJ knockdown (RBPJKD) promotes M2 macrophage polarization and ameliorates uveitis through the mtROS-mediated Notch1-Jagged1-Hes1 signaling pathway. Real-time quantitative (Q-PCR) analysis revealed that the Notch1-Jagged1-Hes1 signaling pathway was active in the eye tissues of experimental autoimmune uveitis (EAU) rats. Immunofluorescence double staining confirmed enhanced signaling primarily occurring in macrophages, establishing a correlation between the Notch1 signaling pathway and macrophages. Transmission electron microscopy evaluated the morphological and functional changes of mitochondria in each group's eye tissues. It demonstrated significant swelling and disorganization in the EAU group, which were effectively restored upon RBPJ knockdown intervention. Finally, by employing an antioxidant N-acetyl-L-cysteine (NAC) to eliminate mtROS in vivo, we observed a decrease in the M2 macrophage polarization level, which prevented the cytoprotective effect conferred by RBPJKD. These findings underscore the relevance of the Notch signaling pathway to the immune system while highlighting the potential role of mtROS as a therapeutic target for inflammation and other related diseases.

3.
Biol Trace Elem Res ; 202(3): 913-926, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37432567

RESUMO

Multiple myeloma (MM) is a malignant clonal proliferative plasma cell tumor. Zinc oxide nanoparticles (ZnO NPs) are used for antibacterial and antitumor applications in the biomedical field. This study investigated the autophagy-induced effects of ZnO NPs on the MM cell line RPMI8226 and the underlying mechanism. After RPMI8226 cells were exposed to various concentrations of ZnO NPs, the cell survival rate, morphological changes, lactate dehydrogenase (LDH) levels, cell cycle arrest, and autophagic vacuoles were monitored. Moreover, we investigated the expression of Beclin 1 (Becn1), autophagy-related gene 5 (Atg5), and Atg12 at the mRNA and protein levels, as well as the level of light chain 3 (LC3). The results showed that ZnO NPs could effectively inhibit the proliferation and promote the death of RPMI8226 cells in vitro in a dose- and time-dependent manner. ZnO NPs increased LDH levels, enhanced monodansylcadaverine (MDC) fluorescence intensity, and induced cell cycle arrest at the G2/M phases in RPMI8226 cells. Moreover, ZnO NPs significantly increased the expression of Becn1, Atg5, and Atg12 at the mRNA and protein levels and stimulated the production of LC3. We further validated the results using the autophagy inhibitor 3-methyladenine (3­MA). Overall, we observed that ZnO NPs can trigger autophagy signaling in RPMI8226 cells, which may be a potential therapeutic approach for MM.


Assuntos
Mieloma Múltiplo , Nanopartículas , Óxido de Zinco , Humanos , Óxido de Zinco/farmacologia , Linhagem Celular Tumoral , Mieloma Múltiplo/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Autofagia , RNA Mensageiro
4.
Eur J Pharmacol ; 960: 176139, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38059448

RESUMO

Autoimmune uveitis is an intraocular inflammatory disease with a high blindness rate in developed countries such as the United States. It is pressing to comprehend the pathogenesis of autoimmune uveitis and develop novel schemes for its treatment. In the present research, we demonstrated that the Notch signaling pathway was activated, and the level of miR-223-3p was significantly reduced in rats with experimental autoimmune uveitis (EAU) compared with the level of normal rats. To investigate the relationship between miR-223-3p and Notch signaling, EAU rats received miR-223-3p-carrying lentivirus, miR-223-3p vector-carrying lentivirus (miR-223-3p-N), and γ-secretase inhibitor (DAPT), respectively. The results of Q-PCR, immunological experiments, and flow cytometry analysis all support the hypothesis that both miR-223-3p and DAPT, a Notch signaling pathway inhibitor, had similar inhibitory effects on the EAU pathological process. That is to say, they could both inhibit the activation of the Notch signaling pathway via modulating recombination signal binding protein-Jκ (RBPJ) to restore the polarization imbalance of M/M2 macrophages in EAU rats. In addition, miR-223-3p could also inhibit NLRP3 inflammasome activation and inflammasome-induced pyroptosis in ocular tissues. Taken together, our findings indicate that miR-223-3p serves as an important regulator in M1 macrophage polarization and pyroptosis, thereby alleviating the inflammatory response in uveitis.


Assuntos
MicroRNAs , Uveíte , Ratos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Inflamassomos , Piroptose , Uveíte/metabolismo , Uveíte/terapia , Macrófagos/metabolismo , MicroRNAs/genética , Transdução de Sinais
5.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(4): 1224-1228, 2023.
Artigo em Chinês | MEDLINE | ID: mdl-37551502

RESUMO

Mitochondria is one of the most important organelles of eukaryotic cells, which is closely related to cell proliferation, apoptosis, autophagy and other life processes. Mitochondrias in biological cells are actually in a highly dynamic state. The fusion and division of mitochondria and their secondary effects play an important role in the regulation of cell life. As a malignant disease of hematopoietic system, leukemia is characterized by excessive proliferation, limited apoptosis, abnormal autophagy and other abnormal cell regulation. Therefore, abnormal mitochondrial dynamics regulation may play a key role in the pathogenesis of leukemia, refractory and drug resistance of leukemia. The article reviews the role of mitochondrial dynamics and abnormal regulation in the pathogenesis and development of leukemia, and provides a theoretical basis for the research on the regulation of mitochondrial dynamics in leukemia.

6.
Int Immunopharmacol ; 120: 110392, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37262960

RESUMO

Uveitis is a common ocular disease that can induce serious complications and sequelae. It is one of the major causes of blindness. Currently, mounting evidence suggests that glucocorticoids (GCs) can suppress ocular inflammation and promote the healing of damaged ocular tissues, but the underlying mechanism remains unclear. The present study aimed to elucidate the mechanism by which GCs modulate the homeostasis of M1/M2 macrophage polarization in experimental autoimmune uveitis (EAU) through the p38MAPK-MEF2C axis. Female Lewis rats were randomly divided into four groups: a normal control (NC) group, an EAU group, an EAU + glucocorticoid (EAU + GC) group, and an EAU + p38MAPK inhibitor (EAU + SB) group. The EAU model was induced in EAU, EAU + GC, and EAU + SB groups, followed by the treatments of normal saline, GC (predisione), and SB203580, respectively. The findings demonstrated that the rats in GC and SB groups had much less ocular inflammation, and the clinical and pathological scores decreased. Further research revealed that GC and SB treatment could inhibit iNOS and CD86 expression while promoting Arg-1 and CD206 secretion in IRBP-induced uveitis rats. Moreover, we found that the role of GC was similar to the results of SB203580, but the role of GC was masked by the C16-PAF (a p38MAPK activator) treatment. Molecular docking and western blot results confirmed that GC's therapeutic action against EAU is mediated via the p38MAPK-MEF2C axis. It regulates macrophage polarization by encouraging M1 to M2 transition and releasing anti-inflammatory factors.


Assuntos
Doenças Autoimunes , Uveíte , Feminino , Ratos , Animais , Glucocorticoides/uso terapêutico , Simulação de Acoplamento Molecular , Ratos Endogâmicos Lew , Uveíte/tratamento farmacológico , Inflamação , Macrófagos/metabolismo , Modelos Animais de Doenças
7.
Biomed Pharmacother ; 164: 114988, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37307677

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is the most common type of lymphoma. Zinc oxide (ZnO) nanoparticles have excellent anti-tumor properties in the biomedical field. The present study aimed to explore the underlying mechanism by which ZnO nanoparticles induce toxicity in DLBCL cells (U2932) via the PINK1/Parkin-mediated mitophagy pathway. After U2932 cells were exposed to various concentrations of ZnO nanoparticles, the cell survival rate, reactive oxygen species (ROS) generation, cell cycle arrest, and changes in the expression of PINK1, Parkin, P62, and LC3 were monitored. Moreover, we investigated monodansylcadaverine (MDC) fluorescence intensity and autophagosome and further validated the results using the autophagy inhibitor 3-methyladenine (3-MA). The results showed that ZnO nanoparticles could effectively inhibit the proliferation of U2932 cells and induce cell cycle arrest at the G0/G1 phases. Moreover, ZnO nanoparticles significantly increased ROS production, MDC fluorescence intensity, autophagosome formation, and the expression of PINK1, Parkin, and LC3, and decreased the expression of P62 in U2932 cells. In contrast, the autophagy level was reduced after the intervention of the 3-MA. Overall, ZnO nanoparticles can trigger PINK1/Parkin-mediated mitophagy signaling in U2932 cells, which may be a potential therapeutic approach for DLBCL.


Assuntos
Linfoma Difuso de Grandes Células B , Nanopartículas , Óxido de Zinco , Humanos , Mitofagia , Óxido de Zinco/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases/metabolismo , Mitocôndrias , Ubiquitina-Proteína Ligases/metabolismo , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/metabolismo , Linhagem Celular
8.
J Healthc Eng ; 2022: 2669114, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36193167

RESUMO

Acyl-CoA thioesterase (ACOT) plays a considerable role in lipid metabolism, which is closely related to the occurrence and development of cancer, nevertheless, its role has not been fully elucidated in acute myeloid leukemia (AML). To explore the role of ACOT2 in AML and to provide a potential therapeutic target for AML, the expression pattern of ACOT was investigated based on the TNMplot, Gene Expression Profiling Interactive Analysis (GEPIA), and Cancer Cell Line Encyclopedia (CCLE) database, and diagnostic value, prognostic value, and clinical phenotype of ACOT were explored based on data from The Cancer Genome Atlas (TCGA). Functional annotation and enrichment analysis of the common targets between ACOT2 coexpressed and AML-related genes were further performed by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) analyses. The protein-protein interaction (PPI) network of ACOT2 coexpressed genes and functional ACOT2-related metabolites association network were constructed based on GeneMANIA and Human Metabolome Database. Among ACOTs, ACOT2 was highly expressed in AML compared to normal control subjects according to TNMplot, GEPIA, and CCLE database, which was significantly associated with poor overall survival (OS) in AML (P=0.003). Moreover, ACOT2 exhibited excellent diagnostic efficiency for AML (AUC: 1.000) and related to French-American-British (FAB) classification and cytogenetics. GO, KEGG, and GSEA analyses of 71 common targets between ACOT2 coexpressed and AML-related genes revealed that ACOT2 is closely related to ACOT1, ACOT4, enoyl-acyl carrier protein reductase, mitochondrial (MECR), puromycin-sensitive aminopeptidase (NPEPPS), SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily B member 1 (SMARCB1), and long-chain fatty acid-CoA ligase 1 (ACSL1) in PPI network, and plays a significant role in lipid metabolism, that is, involved in fatty acid elongation and biosynthesis of unsaturated fatty acids. Collectively, the increase of ACOT2 may be an important characteristic of worse OS and abnormal lipid metabolism, suggesting that ACOT2 may become a potential therapeutic target for AML.


Assuntos
Leucemia Mieloide Aguda , Metabolismo dos Lipídeos , Actinas/genética , Actinas/metabolismo , Proteína de Transporte de Acila/genética , Proteína de Transporte de Acila/metabolismo , Cromatina , Coenzima A/genética , Coenzima A/metabolismo , Ácidos Graxos , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Ligases/genética , Ligases/metabolismo , Metabolismo dos Lipídeos/genética , Oxirredutases/genética , Oxirredutases/metabolismo , Palmitoil-CoA Hidrolase/genética , Palmitoil-CoA Hidrolase/metabolismo , Tioléster Hidrolases
9.
Aging (Albany NY) ; 14(17): 7026-7037, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36069792

RESUMO

BACKGROUND: Heat shock factor 1 (HSF1) is now considered to have the potential to be used as a prognostic biomarker in cancers. However, its clinical significance and potential function in acute myeloid leukemia (AML) remain underexplored. METHODS: In this study, the expression pattern and clinical significance of HSF1 in AML were examined by integrating data from databases including The Cancer Genome Atlas (TCGA), The Genotype-Tissue Expression (GTEx), Vizome, Cancer Cell Line Encyclopedia (CCLE) and Gene Expression Omnibus (GEO). Linkedomics was applied to collect HSF1-related genes in AML. GeneMANIA was applied to outline HSF1-related functional networks. CancerSEA analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and Gene Set Enrichment Analysis (GSEA) were performed to mine the potential mechanism of HSF1 in leukemogenesis. Single-sample Gene Set Enrichment Analysis (ssGSEA) was applied to explore the correlation between HSF1 and infiltrating immune cells in AML. RESULTS: HSF1 expression was elevated in AML compared to healthy controls and indicate a poor overall survival. HSF1 expression was significantly correlated with patients age, associated with patient survival in subgroup of bone marrow blasts (%) >20. Functional analyses indicated that HSF1 plays a role in the metastatic status of AML, and is involved in inflammation-related pathways and biological processes. HSF1 expression was significantly correlated with the immune infiltration of nature killer cells and T cell population. CONCLUSION: HSF1 plays a vital role in the molecular network of AML pathogenesis, and has the potential to be a biomarker for prognosis prediction.


Assuntos
Leucemia Mieloide Aguda , Medula Óssea/metabolismo , Resposta ao Choque Térmico , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Prognóstico
10.
Aging (Albany NY) ; 14(17): 7109-7125, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36098742

RESUMO

Acute promyelocytic leukemia (APL) is a specific subtype of acute myelogenous leukemia (AML) characterized by the proliferation of abnormal promyelocytes. Realgar, a Chinese medicine containing arsenic, can be taken orally. Traditional Chinese medicine physicians have employed realgar to treat APL for over a thousand years. Therefore, realgar may be a promising candidate for the treatment of APL. Nevertheless, the underlying mechanism behind realgar therapy is largely unclear. The present study aimed to investigate the effect of realgar on cell death in the APL cell line (NB4) in vitro and to elucidate the underlying mechanism. In this study, after APL cells were treated with different concentrations of realgar, the cell survival rate, apoptotic assay, morphological changes, ATP levels and cell cycle arrest were assessed. The expression of Bcl-2, Bax, Cytochrome C (Cyt-C) and apoptosis-inducing factor (AIF) at the mRNA and protein levels were also measured by immunofluorescence, quantitative PCR (qPCR) and Western blotting. We found that realgar could significantly inhibit APL cell proliferation and cell death in a time- and dose-dependent manner. Realgar effectively decreased the ATP levels in APL cells. Realgar also induced APL cell cycle arrest at the S and G2/M phases. Following realgar treatment, the mRNA and protein levels of Bcl-2 were significantly downregulated, whereas the levels of Bax, Cyt-C, and AIF were significantly upregulated. In summary, realgar can induce APL cell death via the Bcl-2/Bax/Cyt-C/AIF signaling pathway, suggesting that realgar may be an effective therapeutic for APL.


Assuntos
Arsênio , Leucemia Promielocítica Aguda , Trifosfato de Adenosina , Apoptose , Fator de Indução de Apoptose/metabolismo , Arsênio/metabolismo , Arsênio/farmacologia , Arsênio/uso terapêutico , Arsenicais , Morte Celular , Linhagem Celular Tumoral , Citocromos c/metabolismo , Citocromos c/farmacologia , Citocromos c/uso terapêutico , Humanos , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/metabolismo , Medicina Tradicional Chinesa , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro , Transdução de Sinais , Sulfetos , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
11.
IUBMB Life ; 74(6): 519-531, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35383422

RESUMO

Zinc oxide nanoparticles (ZnO NPs) have exhibited excellent anti-tumor properties; the present study aimed to elucidate the underlying mechanism of ZnO NPs induced apoptosis in acute myeloid leukemia (AML) cells by regulating mitochondrial division. THP-1 cells, an AML cell line, were first incubated with different concentrations of ZnO NPs for 24 hr. Next, the expression of Drp-1, Bcl-2, Bax mRNA, and protein was detected, and the effects of ZnO NPs on the levels of reactive oxygen species (ROS), mitochondrial membrane potential (Δψm), apoptosis, and ATP generation in THP-1 cells were measured. Moreover, the effect of Drp-1 inhibitor Mdivi-1 and ZnO NPs on THP-1 cells was also detected. The results showed that the THP-1 cells survival rate decreased with the increment of ZnO NPs concentration and incubation time in a dose- and time-dependent manner. ZnO NPs can reduce the cell Δψm and ATP levels, induce ROS production, and increase the levels of mitochondrial division and apoptosis. In contrast, the apoptotic level was significantly reduced after intervention of Drp-1 inhibitor, suggesting that ZnO NPs can induce the apoptosis of THP-1 cells by regulating mitochondrial division. Overall, ZnO NPs may provide a new basis and idea for treating human acute myeloid leukemia in clinical practice.


Assuntos
Leucemia Mieloide Aguda , Nanopartículas , Óxido de Zinco , Trifosfato de Adenosina/metabolismo , Apoptose , Sobrevivência Celular , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Óxido de Zinco/farmacologia
12.
Medicine (Baltimore) ; 100(49): e27884, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34889237

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) is the most common leukemia among the adult population and accounts for about 80% of all cases. Despite advancements in therapeutic regimens, the prognosis remains very poor, especially in the elderly population. Selinexor is a first-in-class, oral, small molecule Exportin-1 inhibitor that is being developed for the treatment of a variety of cancers, including AML. The efficacy and safety issues of selinexor in the treatment of AML are still the focus of attention. Therefore, we conducted a meta-analysis to evaluate the efficacy and safety of selinexor in the treatment of AML. METHODS: According to the search strategy, regardless of publication date or language, randomized controlled trials of selinexor for AML will be retrieved from 8 databases. First of all, the literature was screened according to the eligibility criteria, and use the Cochrane Collaboration's tool to assess the quality of the included literature. Then, using Rev Man 5.3 and STATA 14.2 software for traditional meta-analysis. Finally, the evaluation of the quality of the evidence and the strength of the recommendations will adopt the Grading of Recommendations, Assessment, Development, and Evaluation method. RESULTS: This study will evaluate the efficacy and safety of selinexor for AML, thereby providing more evidence support for clinical decision-making in AML. CONCLUSION: Our research will provide more references for the clinical medication of patients with AML.


Assuntos
Hidrazinas/efeitos adversos , Leucemia Mieloide Aguda/tratamento farmacológico , Triazóis/efeitos adversos , Adulto , Idoso , Humanos , Hidrazinas/uso terapêutico , Metanálise como Assunto , Revisões Sistemáticas como Assunto , Triazóis/uso terapêutico
13.
Medicine (Baltimore) ; 100(49): e27981, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34889242

RESUMO

RATIONALE: Corneal dermoids are a rare cause of corneal opacification, consisting of abnormal mesoblastic tissue surrounded by epithelium. Here, we describe the case of a 1-year-old child who had a congenital corneal dermoid in the left eye since birth; thus, the patient underwent tumor excision followed by keratoplasty. PATIENT CONCERN: A 1-year-old girl was brought to the hospital by her parents, who had been noticing a mass on the surface of her left eyeball since birth. The patient had no other previous or concurrent disease nor family history for dermoids. CLINICAL FINDINGS: No abnormalities were present in the cornea and the anterior and posterior segments of the right eye. Eye movement, intraocular pressure, and the position of the upper eyelid of the left eye were normal. No signs of conjunctival hyperemia were present. The tumor presented as a yellowish-pink mass with hair and veins on the surface. DIAGNOSE: The patient was initially diagnosed with a keratoconjunctival tumor of the left eye by a clinical doctor. INTERVENTIONS: Corneal tumor resection combined with keratoplasty was performed in the patient. Eye drops with 1% cyclosporine were administered 3 times per day to prevent immune rejection. OUTCOMES: Based on postoperative pathological examinations, the final diagnosis was a corneal dermoid. The patient had an uneventful healing process and rapid corneal re-epithelization. The ocular surface was stable during the follow-up visits, and no complications emerged. LESSONS: We report a rare case of congenital corneal dermoid. We learned that close follow-up is needed after surgery in such cases.


Assuntos
Doenças da Córnea/cirurgia , Transplante de Córnea , Cisto Dermoide/cirurgia , Neoplasias Oculares/cirurgia , Córnea/cirurgia , Doenças da Córnea/patologia , Cisto Dermoide/patologia , Neoplasias Oculares/patologia , Feminino , Humanos , Lactente , Resultado do Tratamento
14.
Eur J Pharmacol ; 907: 174294, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34217712

RESUMO

Glaucoma is a leading cause of irreversible blindness worldwide due to elevated intraocular pressure, and filtering surgery can efficiently control intraocular pressure of glaucoma patients. However, failure of filtering surgery commonly results from scarring formation at the surgical site, in which fibroblast proliferation plays an essential role in the scarring process. Our previous study has demonstrated that zinc oxide (ZnO) nanoparticles could efficiently inhibit human tenon fibroblasts (HTFs) proliferation. The present study aimed to explore the underlying mechanism involved in oxidative stress and autophagy signaling in zinc oxide (ZnO) nanoparticles-induced inhibition of HTFs proliferation. In this study, we investigated the effect of ZnO nanoparticles on HTFs proliferation, mitochondrial function, ATP production and nuclear morphology. Moreover, we also explored the interactions between ZnO nanoparticles and HTFs, investigated the influence of ZnO nanoparticles on the autophagosome formation, the expression of autophagy-related 5 (Atg5), Atg12 and Becn1 (Beclin 1), and the level of light chain 3 (LC3). The results suggested that ZnO nanoparticles can efficiently inhibit HTFs proliferation, disrupt the mitochondrial function, attenuate the adenosine triphosphate (ATP) generation, and damage the nuclear morphology of HTFs. Exposure of HTFs to ZnO nanoparticles can also induce the shifted peak, elevate the expression of Atg5, Atg12 and Becn1, enhance the autophagosome formation, and promote the LC3 expression, and thus activate autophagy signaling. Overall, ZnO nanoparticles can apparently trigger oxidative stress and activate autophagy signaling in HTFs, and thus inhibit HTFs proliferation and mediate HTFs apoptosis.


Assuntos
Óxido de Zinco , Apoptose , Autofagia , Fibroblastos , Humanos , Cápsula de Tenon
15.
Medicine (Baltimore) ; 100(23): e26098, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34114994

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) is the most common malignant tumor of the hematopoietic system, which seriously threatens the lives of patients. Most AML patients have acute onset, severe condition, and poor prognosis. The present study aimed to comprehensively evaluate the effectiveness and safety of chemotherapy combined with different doses of interleukin-2 (IL-2) maintenance treatments in AML by Bayesian network meta-analysis (NMA). METHODS: From its inception until October 2021, we will search PubMed, Cochrane Library, CNKI, Embase, and other databases to comprehensively collect randomized controlled trials (RCTs) of chemotherapy combined with different doses of IL-2 maintenance therapies for AML. Two independent researchers will complete the literature screening and data extraction according to the inclusion and exclusion criteria, and then independently conduct a bias risk assessment of all the evidence. Bayesian NMA was used to evaluate all the evidence comprehensively. Use STATA16.0 and WinBUGS1.4.3 software to process and analyze all data, and classify the quality of evidence in NMA according to grading of recommendations assessment, development, and evaluation . RESULTS: The study will evaluate the efficacy and safety of chemotherapy combined with different doses of IL-2 maintenance therapies for AML. CONCLUSION: The study will provide a basis for the efficacy and safety of chemotherapy combined with different doses of IL-2 maintenance therapies for AML. We hope that this study can provide meaningful support for clinicians and patients. PROTOCOL REGISTRATION NUMBER: INPLASY202140106. ETHICAL APPROVAL: Since the study is based on published or registered RCTs, ethical approval and patient informed consent are abandoned.


Assuntos
Interleucina-2/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Quimioterapia de Manutenção/métodos , Antineoplásicos/farmacologia , Teorema de Bayes , Humanos , Metanálise em Rede , Projetos de Pesquisa
16.
Artigo em Inglês | MEDLINE | ID: mdl-32750637

RESUMO

Uveitis is a recurrent, inflammatory eye disease that occurs in the retina, iris, ciliary body and choroid. Currently, the detailed mechanism is still unclear. Proteomics can offer a powerful set of tools for the direct high-throughput study and a key contribution to the understanding of protein functions. This approach can also allow us to compare the protein profiling of the cells in healthy and diseased states that can be used to identify proteins associated with disease development and progression. In the present study, we first established an autoimmune uveitis (EAU) rat model. On day 12 after immunization, we isolated the rat retinas from both normal and EAU animals to collect total proteins. Using tandem mass tag (TMT) peptide labeling coupled with LC-MS/MS quantitative proteomics technique, we identified the differentially expressed proteins in EAU rat retinas, performed bioinformatics analyses, validated the expression of the COX1, NADH1, C3, and C9 proteins, and determined the adenosine triphosphate (ATP) levels. The results indicated that there were 190 upregulated and 103 downregulated proteins in EAU rat retinas. Bioinformatics analysis revealed the differentially expressed proteins were mainly involved in acute inflammatory response, visual perception and eye photoreceptor cell differentiation that were mainly related to complement and coagulation cascades, phagosome, PI3K-Akt signaling, and metabolic pathways. In conclusion, based on the TMT-based quantitative proteomics technique, the differentially expressed proteins in EAU rat retinas were mainly associated with complement and coagulation cascades and metabolic pathways. Our findings will facilitate the understanding of the pathogenesis of uveitis and will be useful for subsequent studies.


Assuntos
Proteoma/análise , Proteômica/métodos , Retina/química , Espectrometria de Massas em Tandem/métodos , Uveíte/metabolismo , Animais , Doenças Autoimunes/metabolismo , Cromatografia Líquida , Modelos Animais de Doenças , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Ratos , Retina/metabolismo
17.
Arch Biochem Biophys ; 688: 108403, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32418893

RESUMO

Myopia is a main cause of preventable or treatable visual impairment, it has become a major public health issue due to its increasingly high prevalence worldwide. Currently, it is confirmed that the development of myopia is associated with the disorders of accommodation. As a dominant factor for accommodation, ciliary muscle contraction/relaxation can regulate the physiological state of the lens and play a crucial role in the development of myopia. To investigate the relationship between myopia and ciliary muscle, the guinea pigs were randomly divided into a normal control (NC) group and a negative lens-induced myopia (LIM) group, and the animals in each group were further randomly assigned into 2-week (n = 18) and 4-week (n = 21) subgroups in accordance with the duration of myopic induction of 2 and 4 weeks, respectively. In the present study, right eyes of the animals in LIM group were covered with -6.0 D lenses to induce myopia. Next, we performed the haematoxylin and eosin (H&E) staining to observe the pathological change of ciliary muscle, determined the contents of adenosine triphosphate (ATP) and lactate acid (LA), and measured the Na+/K+-ATPase expression and activity in ciliary muscles in both NC and LIM groups. Moreover, we also analyzed the potassium ion (K+) flux in ciliary muscles from 4-week NC and LIM guinea pigs. As a result, we found that the arrangements of ciliary muscles in LIM guinea pigs were broken, dissolved or disorganized; the content of ATP decreased, whereas the content of LA increased in ciliary muscles from LIM guinea pigs. Monitoring of K+ flux in ciliary muscles from LIM guinea pigs demonstrated myopia-triggered K+ influx. Moreover, we also noted a decreased expression of Na+/K+-ATPase (Atp1a1) at both mRNA and protein levels and reduced activity in ciliary muscles from LIM guinea pigs. Overall, our results will facilitate the understanding of the mechanism associated with inhibitory Na+/K+-ATPase in lens-induced myopia and which consequently lead to the disorder of microenvironment within ciliary muscles from LIM guinea pigs, paving the way for a promising adjuvant approach in treating myopia in clinical practice.


Assuntos
Olho/metabolismo , Homeostase/fisiologia , Músculo Liso/metabolismo , Miopia/metabolismo , Potássio/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Olho/patologia , Cobaias , Ácido Láctico/metabolismo , Masculino , Músculo Liso/patologia , Miopia/patologia , RNA Mensageiro/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
18.
Arch Biochem Biophys ; 683: 108324, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32112740

RESUMO

Glaucoma is the leading cause of irreversible blindness in the world and trabeculectomy remains still the most commonly performed filtration surgery. Failure of trabeculectomy is due to the formation of scarring, which is associated with the increased fibroblast proliferation, activation, and collagen deposition at the site of the drainage channel with subconjunctival fibrosis. Our previous study has revealed that zinc oxide (ZnO) nanoparticles could efficiently decrease the expressions of TGF-ß1 and inhibit fibroblast-mediated collagen lattice contraction. However, the mechanism underlying ZnO nanoparticle-induced fibroblast apoptosis is still unclear. In the present study, we investigated the effect of ZnO nanoparticles on the reactive oxygen species (ROS) and mitochondrial membrane potential (Δψm) in human Tenon fibroblasts (HTFs). Moreover, we also explored the influence of ZnO nanoparticles on the expression of Caspase-3, Caspase-9, apoptotic protease-activating factor-1 (Apaf-1), fibroblast-specific protein-1 (FSP-1), collagen III, and E-cadherin. The results indicated that ZnO nanoparticles markedly inhibit HTFs viability and decrease the Δψm in a concentration-dependent pattern. Exposure of HTFs to ZnO nanoparticles could also induce the elevated Caspase-3, Caspase-9, and Apaf-1 expression, decrease the levels of FSP-1, collagen III, and E-cadherin expression, leading to HTFs apoptosis. Our results suggested that elevated ROS and activated Caspase signaling play a fundamental role in ZnO nanoparticle-induced HTFs apoptosis.


Assuntos
Apoptose , Fibroblastos/citologia , Nanopartículas Metálicas/química , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Óxido de Zinco/química , Antioxidantes/metabolismo , Fator Apoptótico 1 Ativador de Proteases/metabolismo , Caspase 3/metabolismo , Caspase 9/metabolismo , Movimento Celular , Sobrevivência Celular , Humanos , Potencial da Membrana Mitocondrial , Fator de Crescimento Transformador beta1/metabolismo
19.
Biomed Pharmacother ; 122: 109712, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31918281

RESUMO

BACKGROUND: Human multiple myeloma (MM) is a malignant and incurable B cell tumor. Zinc oxide nanoparticles (ZnO NPs) have been widely used in biomedical fields including anti-bacterial and anti-tumor. However, the influence of ZnO NPs on MM cells is still unclear. The present study aimed to investigate the effect of ZnO NPs on MM cell (a human myeloma-derived RPMI8226 cell line) death in vitro and the underlying mechanism. METHODS: The morphology of ZnO NPs was characterized by transmission electron microscopy (TEM), and the inhibitory and apoptotic effect of ZnO NPs on human MM cells was monitored by a CCK-8 method and an Annexin V-FITC/PI assay. Meanwhile, the morphological change in the cells after exposure to ZnO NPs was observed by a light field microscope. Moreover, the effects of ZnO NPs on the ATP level, reactive oxygen species (ROS) generation, and apoptosis were separately explored by the DCFH-DA fluorescent probe, flow cytometry, and ATP bioluminescence assay. Moreover, the expression of cytochrome C (Cyt-C), Apaf-1, Caspase-9 and Caspase-3 at mRNA and protein levels was further determined by using quantitative PCR (Q-PCR) and western blotting. In the present study, the human peripheral blood mononuclear cells (PBMCs) were used as normal control samples for the relevant experiment. RESULTS: The results indicated that ZnO NPs could significantly inhibit human MM cell proliferation and cell death in a time- and dose-dependent manner in vitro, and this outcome can be confirmed by cell morphology and apoptosis assay. Meanwhile, the results also showed that ZnO NPs could effectively increase ROS production and decrease ATP levels in human MM cells. ZnO NPs could also significantly elevate the expression of Cyt-C, Apaf-1, Caspase-9 and Caspase-3 at mRNA and protein levels, leading to cell death. By contrast, ZnO NPs showed little cytotoxic influence on PBMCs. CONCLUSION: ZnO NPs can significantly induce human MM cell death in a time- and dose-dependent manner in vitro, decrease the ATP production and enhance the ROS generation. ZnO NPs can also increase Cyt-C, Apaf-1, Caspase-9 and Caspase-3 expression at mRNA and protein levels in human MM cells, and initiate MM cell apoptosis, indicating that Cyt-C, Apaf-1, Caspase-9 and Caspase-3 play crucial roles in ZnO NPs-induced, mitochondria-mediated apoptosis in human MM cells. Overall, ZnO NPs may be a potential agent in treating human multiple myeloma in clinical practice.


Assuntos
Morte Celular/efeitos dos fármacos , Mieloma Múltiplo/tratamento farmacológico , Nanopartículas/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Óxido de Zinco/farmacologia , Adolescente , Adulto , Fator Apoptótico 1 Ativador de Proteases/metabolismo , Caspase 9/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Mieloma Múltiplo/metabolismo , Adulto Jovem
20.
Arch Biochem Biophys ; 669: 1-10, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31112708

RESUMO

Glaucoma is a major cause of irreversible blindness in the world and filtering surgery is commonly carried out to control intraocular pressure. Failure of filtering surgery is usually due to postoperative scarring, and fibroblast proliferation, collagen production and subconjunctival fibrosis play a prominent role in obstructing aqueous humor from the anterior chamber to the subconjunctival space. Zinc oxide (ZnO) nanoparticles have been widely applied in biomedical fields. However, the influence of ZnO nanoparticles on human tenon fibroblasts (HTFs) is still unclear. In the present study, we first explored the effects of various concentrations of ZnO nanoparticles on HTFs proliferation, reactive oxygen species (ROS) generation, cell cycle arrest, and apoptosis. Further, we determined the changes of transforming growth factor-ß (TGF-ß1), fibronectin (FN) extra domain A (ED-A), and procollagen I carboxyterminal propeptide (PICP) at mRNA and protein levels, explored the effect of ZnO nanoparticles on the collagen lattice contraction in HTFs. The results indicated that ZnO nanoparticles can efficiently inhibit HTFs proliferation, elevate ROS production level, and induce cell cycle arrest at G2/M phase, leading to HTFs apoptosis. ZnO nanoparticles can also decrease the expressions of TGF-ß1, ED-A, and PICP at mRNA and protein levels; significantly prevent fibroblast-mediated collagen lattice contraction. Taken together, ZnO nanoparticles can efficiently ameliorate collagen lattice contraction in HTFs, and may be a promising antifibrotic agent in glaucoma filtration surgery. Our findings provide a new insight on anti-scar formation after glaucoma filtration surgery by using ZnO nanoparticles.


Assuntos
Colágeno/metabolismo , Fibroblastos/efeitos dos fármacos , Nanopartículas Metálicas/química , Cápsula de Tenon/citologia , Óxido de Zinco/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fibronectinas/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Fragmentos de Peptídeos/metabolismo , Pró-Colágeno/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Óxido de Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA