Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
World J Diabetes ; 15(9): 1932-1941, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39280178

RESUMO

BACKGROUND: Diabetes mellitus type 2 (T2DM) is formed by defective insulin secretion with the addition of peripheral tissue resistance of insulin action. It has been affecting over 400 million people all over the world. AIM: To explore the pathogenesis of T2DM and to develop and implement new prevention and treatment strategies for T2DM. METHODS: Receiver operating characteristic (ROC) curve analysis was used to conduct diagnostic markers. The expression level of genes was determined by reverse transcription-PCR as well as Western blot. Cell proliferation assays were performed by cell counting kit-8 (CCK-8) tests. At last, T2DM mice underwent Roux-en-Y gastric bypass surgery. RESULTS: We found that NPAS2 was significantly up-regulated in islet ß cell apoptosis of T2DM. The ROC curve revealed that NPAS2 was capable of accurately diagnosing T2DM. NPAS2 overexpression did increase the level of KANK1. In addition, the CCK-8 test revealed knocking down NPAS2 and KANK1 increased the proliferation of MIN6 cells. At last, we found that gastric bypass may treat type 2 diabetes by down-regulating NPAS2 and KANK1. CONCLUSION: This study demonstrated that NPAS2 induced ß cell dysfunction by regulating KANK1 expression in type 2 diabetes, and it may be an underlying therapy target of T2DM.

2.
Diabetes Metab Syndr Obes ; 16: 3617-3629, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028990

RESUMO

Objective: The objective of this study was to explore the effects and related mechanisms of Roux-en-Y gastric bypass (RYGB) on insulin sensitivity in obese rats with type 2 diabetes mellitus (T2DM). Methods: The obese T2DM rat model was constructed by feeding a high-fat diet and injecting streptozotocin (STZ), and treated with RYGB. Grin3a shRNA was injected into the bilateral hypothalamic arcuate nucleus (ARC) to knockdown the Grin3a expression on T2DM rats. Eight weeks after operation, the body weight, fasting blood glucose (FBG), fasting serum insulin (FSI), homeostatic model assessment of insulin resistance (HOMA-IR), and plasma triglyceride (TG) levels were assessed. Hematoxylin & eosin (H&E) staining was adopted to observe the white adipose tissue (WAT) of rats. Western blot and qRT-PCR were used to detect the expression of Grin3a, adenosine 5' monophosphate-activated protein kinase (AMPK) and p-AMPK in ARC of rats. Later, the plasmid over-expressing or knocking down Grin3a was transfected into differentiated 3T3-L1 adipocytes, and the TG level and the formation of lipid droplets in adipocyte were assessed by TG kit and oil red O staining. The expression of lipogenic transcription factors in cells was detected by qRT-PCR. Results: RYGB reduced FBG, FSI, HOMA-IR and plasma TG levels in T2DM rats while increasing Grin3a expression and p-AMPK/AMPK ratio in ARC. Knockdown of Grin3a not only reversed the decrease of FBG, FSI, HOMA-IR and plasma TG levels in T2DM rats induced by RYGB, but also reversed the up-regulation of p-AMPK/AMPK ratio in ARC affected by RYGB. Moreover, knocking down Grin3a significantly increased the TG level, promoted the formation of lipid droplets and up-regulated the expressions of lipogenic transcription factors in adipocytes. Conclusion: RYGB improved the insulin sensitivity, reduced the plasma TG level and lessens the fat accumulation in obese T2DM rats by regulating the Grin3a/AMPK signal in ARC.

3.
Dis Markers ; 2022: 8902916, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35899178

RESUMO

Objective: Roux-en-Y gastric bypass (RYGB) has shown good effects in improving obesity and type II diabetes mellitus (T2DM), but the underlying mechanisms remain unclear. This study explored the changes of related lncRNAs, mRNAs, and signaling pathways in white adipose tissue of T2DM rats after RYGB based on RNA-Seq sequencing, with the aim to provide a theoretical basis for RYGB treatment. Methods: T2DM rat models were established by continuous feeding with a high-fat diet and injection of streptozotocin (STZ), after which they underwent RYGB or sham surgery. After the surgery, their body weight was measured weekly. Their fasting blood glucose (FBG) and fasting serum insulin (FSI) were also measured. A homeostasis model assessment of insulin resistance (HOMA-IR) was calculated at weeks 0, 8, and 12. Besides, white adipose tissue of T2DM rats was collected for RNA-Seq sequencing and validated by qRT-PCR. A series of bioinformatics analyses, such as differential expression genes (DEGs) screening, was performed. GO and KEGG functional enrichment analysis and protein-protein interaction (PPI) network construction were conducted based on the sequencing data. Results: RYGB surgery could significantly inhibit the weight growth rate and decrease the FBG, FSI, and HOMA-IR of T2DM rats. Bioinformatics analysis of RNA sequencing (RNA-Seq) results revealed that 87 DE- lncRNAs (49 upregulated and 38 downregulated) and 1,824 DEGs (896 upregulated and 928 downregulated) were present in between the RYGB group and Sham group. GO and KEGG analysis showed that the target genes of DEGs and differentially expressed lncRNAs (DE-lncRNAs) were mainly associated with amino acid metabolism, fatty acid metabolism, channel activity, and other processes. In addition, the PPI network diagram also displayed that genes such as Fasn, Grin3a, and Nog could be key genes playing a role after RYGB. qRT-PCR showed that the expression level of Grin3a in the RYGB group was significantly increased compared with the Sham group, while the expression of Fasn and Nog was significantly decreased, which was consistent with the sequencing results. Conclusion: Using RNA-Seq sequencing, this study revealed the changes of related lncRNAs, mRNAs, and signaling pathways in the white adipose tissue of T2DM rats after RYGB and identified Fasn, Grin3a, and Nog as potential key genes to function after RYGB.


Assuntos
Diabetes Mellitus Tipo 2 , Derivação Gástrica , Resistência à Insulina , RNA Longo não Codificante , Tecido Adiposo/metabolismo , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/cirurgia , Derivação Gástrica/métodos , Insulina , Obesidade/genética , Obesidade/metabolismo , Obesidade/cirurgia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
4.
Angew Chem Int Ed Engl ; 56(27): 7881-7885, 2017 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-28466484

RESUMO

To recycle rusty stainless-steel meshes (RSSM) and meet the urgent requirement of developing high-performance cathodes for potassium-ion batteries (KIB), we demonstrate a new strategy to fabricate flexible binder-free KIB electrodes via transformation of the corrosion layer of RSSM into compact stack-layers of Prussian blue (PB) nanocubes (PB@SSM). When further coated with reduced graphite oxide (RGO) to enhance electric conductivity and structural stability, the low-cost, stable, and binder-free RGO@PB@SSM cathode exhibits excellent electrochemical performances for KIB, including high capacity (96.8 mAh g-1 ), high discharge voltage (3.3 V), high rate capability (1000 mA g-1 ; 42 % capacity retention), and outstanding cycle stability (305 cycles; 75.1 % capacity retention).

5.
Acta Biomater ; 37: 83-92, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27109764

RESUMO

UNLABELLED: As the primary determinants of the clinical behaviors of human cancers, the discovery of cancer stem cells (CSCs) represents an ideal target for novel anti-cancer therapies (Kievit et al., 2014). Notably, CSCs are difficult to propagate in vitro, which severely restricts the study of CSC biology and the development of therapeutic agents. Emerging evidence indicates that CSCs rely on a niche that controls their differentiation and proliferation, as is the case with normal stem cells (NSCs). Replicating the in vivo CSC microenvironment in vitro using three-dimensional (3D) porous scaffolds can provide means to effectively generate CSCs, thus enabling the discovery of CSC biology. This paper presents our study on a novel alginate-based platform for mimicking the CSC niche to promote CSC proliferation and enrichment. In this study, we used a versatile mouse 4T1 breast cancer model to independently evaluate the matrix parameters of a CSC niche - including the material's mechanical properties, cytokine immobilization, and the composition of the extracellular matrix's (ECM's) molecular impact - on CSC proliferation and enrichment. On this basis, the optimal stiffness and concentration of hyaluronic acid (HA), as well as epidermal growth factor and basic fibroblast growth factor immobilization, were identified to establish the platform for mimicking the 4T1 breast CSCs (4T1 CSCs) niche. The 4T1 CSCs obtained from the platform show increased expression of the genes involved in breast CSC and NSC, as compared to general 2D or 3D culture, and 4T1 CSCs were also demonstrated to have the ability to quickly form a subcutaneous tumor in homologous Balb/c mice in vivo. In addition, the platform can be adjusted according to different parameters for CSC screening. Our results indicate that our platform offers a simple and efficient means to isolate and enrich CSCs in vitro, which can help researchers better understand CSC biology and thus develop more effective therapeutic agents to treat cancer. STATEMENT OF SIGNIFICANCE: As the primary determinants of the clinical behaviors of human cancers, the discovery of cancer stem cells (CSCs) represents an ideal target for novel anti-cancer therapies. However, CSCs are difficult to propagate in vitro, which severely restricts the study of CSC biology and the development of therapeutic agents. Emerging evidence indicates that CSCs rely on a niche that controls their differentiation and proliferation, as is the case with normal stem cells (NSCs). Replicating the in vivo CSC microenvironment in vitro using three-dimensional (3D) porous scaffolds can provide means to effectively generate CSCs, thus enabling the discovery of CSC biology. In our study, a novel alginate-based platform were developed for mimicking the CSC niche to promote CSC proliferation and enrichment.


Assuntos
Alginatos/química , Células-Tronco Neoplásicas/patologia , Pesquisa com Células-Tronco , Animais , Linhagem Celular Tumoral , Citocinas/farmacologia , Feminino , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Ácido Hialurônico/química , Hidrogênio/química , Proteínas Imobilizadas/farmacologia , Fenômenos Mecânicos , Camundongos Endogâmicos BALB C , Peso Molecular , Células-Tronco Neoplásicas/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia , Nicho de Células-Tronco/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA