Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(11): e0294257, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033027

RESUMO

INTRODUCTION: Hepatic fibrosis is a progressive pathological process involving the exhaustion of hepatocellular regenerative capacity and ultimately leading to the development of cirrhosis and even hepatocellular carcinoma. Brg1, the core subunit of the SWI/SNF chromatin-remodeling complex, was recently identified as important for liver regeneration. This study investigates the role of Brg1 in hepatic fibrosis development. METHODS: Hepatocyte-specific Brg1 knockout mice were generated and injected with carbon tetrachloride (CCl4) for 4, 6, 8, and 12 weeks to induce liver fibrosis. Afterwards, liver fibrosis and liver damage were assessed. RESULTS: Brg1 expression was significantly increased in the fibrotic liver tissue of wild-type mice, as compared to that of untreated wild-type mice. The livers of the Brg1 knockout animals showed reduced liver inflammation, extracellular matrix accumulation, and liver fibrosis. TNF-α and NF-κB-mediated inflammatory response was reduced in Brg1 knockout animals. CONCLUSION: Brg1 promotes the progression of liver fibrosis in mice and may therefore be used as a potential therapeutic target for treating patients with liver fibrosis due to chronic injury.


Assuntos
Carcinoma Hepatocelular , Hepatite , Neoplasias Hepáticas , Animais , Camundongos , Tetracloreto de Carbono/toxicidade , Carcinoma Hepatocelular/patologia , Matriz Extracelular/metabolismo , Fibrose , Hepatite/patologia , Inflamação/patologia , Fígado/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Neoplasias Hepáticas/patologia , Camundongos Knockout
2.
J Exp Clin Cancer Res ; 42(1): 80, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37016377

RESUMO

BACKGROUND: FYN is a nonreceptor tyrosine kinase that regulates diverse pathological processes. The pro-cancer role of FYN in multiple malignancies has been elucidated. However, the mechanisms that FYN promotes gastric cancer (GC) progression remain largely unknown. METHODS: In vitro and in vivo assays were used to investigate the function of FYN. FYN, TOPK, p-TOPK expression in GC specimens were detected by immunohistochemistry. Phosphoproteomics assays identify TOPK downstream substrate molecules. The molecular mechanism was determined using COIP assays, pull-down assays, immunofluorescence co-localization assays, western blotting, 32p-labeled isotope radioautography assays, vitro kinase assays, and TOPK knockout mice. RESULTS: FYN was found to be significantly upregulated in GC tissues as well as in GC cells. Knockdown of FYN expression markedly attenuated the malignant phenotype of GC cells in vitro and in vivo. Mechanistically, we identified TOPK/PBK as a novel downstream substrate of FYN, FYN directly phosphorylates TOPK at Y272. One phosphospecific antibodies against Y272 was developed to validate the phosphorylation of TOPK by FYN. Moreover, the TOPK-272F mutation impaired the interaction between TOPK and FYN, leading to disappeared TOPK phosphorylation. Consistently, human GC tissues displayed increased p-TOPK(Y272), which correlated with poor survival. Phosphoproteomics results showed a significant downregulation of both HSPB1 and p-HSPB1(ser15) in TOPK-knockdown cells, which was confirmed by TOPK-konckout mice. CONCLUSIONS: FYN directly binds to TOPK in GC cells and phosphorylates TOPK at the Y272, which leads to proliferation and metastasis of GC. FYN-TOPK axis facilitates GC progression by phosphorylating HSPB1. Collectively, our study elucidates the pivotal role of the FYN-TOPK-HSPB1 cascade in GC.


Assuntos
Quinases de Proteína Quinase Ativadas por Mitógeno , Neoplasias Gástricas , Humanos , Animais , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Linhagem Celular Tumoral , Neoplasias Gástricas/genética , Fosforilação , Proliferação de Células/fisiologia , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo
3.
J Hepatol ; 78(4): 820-835, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36681162

RESUMO

BACKGROUND & AIMS: Hepatocyte growth and proliferation depends on membrane phospholipid biosynthesis. Short-chain fatty acids (SCFAs) generated by bacterial fermentation, delivered through the gut-liver axis, significantly contribute to lipid biosynthesis. We therefore hypothesized that dysbiotic insults like antibiotic treatment not only affect gut microbiota, but also impair hepatic lipid synthesis and liver regeneration. METHODS: Stable isotope labeling and 70% partial hepatectomy (PHx) was carried out in C57Bl/6J wild-type mice, in mice treated with broad-spectrum antibiotics, in germ-free mice and mice colonized with minimal microbiota. The microbiome was analyzed by 16S rRNA gene sequencing and microbial culture. Gut content, liver, blood and primary hepatocyte organoids were tested by mass spectrometry-based lipidomics, quantitative reverse-transcription PCR (qRT-PCR), immunoblot and immunohistochemistry for expression of proliferative and lipogenic markers. Matched biopsies from hyperplastic and hypoplastic liver tissue of patients subjected to surgical intervention to induce hyperplasia were analyzed by qRT-PCR for lipogenic enzymes. RESULTS: Three days of antibiotic treatment induced persistent dysbiosis with significantly decreased beta-diversity and richness, but a massive increase of Proteobacteria, accompanied by decreased colonic SCFAs. After PHx, antibiotic-treated mice showed delayed liver regeneration, increased mortality, impaired hepatocyte proliferation and decreased hepatic phospholipid synthesis. Expression of the lipogenic enzyme SCD1 was upregulated after PHx but delayed by antibiotic treatment. Germ-free mice essentially recapitulated the phenotype of antibiotic treatment. Phospholipid biosynthesis, hepatocyte proliferation, liver regeneration and survival were rescued in gnotobiotic mice colonized with a minimal SCFA-producing microbial community. SCFAs induced the growth of murine hepatocyte organoids and hepatic SCD1 expression in mice. Further, SCD1 was required for proliferation of human hepatoma cells and was associated with liver regeneration in human patients. CONCLUSION: Gut microbiota are pivotal for hepatic membrane phospholipid biosynthesis and liver regeneration. IMPACT AND IMPLICATIONS: Gut microbiota affect hepatic lipid metabolism through the gut-liver axis, but the underlying mechanisms are poorly understood. Perturbations of the gut microbiome, e.g. by antibiotics, impair the production of bacterial metabolites, which normally serve as building blocks for membrane lipids in liver cells. As a consequence, liver regeneration and survival after liver surgery is severely impaired. Even though this study is preclinical, its results might allow physicians in the future to improve patient outcomes after liver surgery, by modulation of gut microbiota or their metabolites.


Assuntos
Membrana Celular , Microbioma Gastrointestinal , Hepatócitos , Regeneração Hepática , Fosfolipídeos , Animais , Humanos , Camundongos , Antibacterianos/farmacologia , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Hiperplasia/metabolismo , Hiperplasia/patologia , Fígado/patologia , Regeneração Hepática/fisiologia , Camundongos Endogâmicos C57BL , Fosfolipídeos/biossíntese , Fosfolipídeos/metabolismo , RNA Ribossômico 16S , Hepatócitos/metabolismo , Membrana Celular/metabolismo
4.
Oxid Med Cell Longev ; 2022: 6575534, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36561981

RESUMO

Background: Ovarian cancer (OC) is one of the most frequently seen and fatal gynecological malignancies, and oxidative stress (OS) plays a critical role in the development and chemoresistance of OC. Materials and Methods: OS-related genes (OSRGs) were obtained from the Molecular Signatures Database. Besides, gene expression profiles and clinical information from The Cancer Genome Atlas (TCGA) were selected to identify the prognostic OSRGs. Moreover, univariate Cox regression, LASSO, and multivariate Cox regression analyses were conducted sequentially to establish a prognostic signature, which was later validated in three independent Gene Expression Omnibus (GEO) datasets. Next, gene set enrichment analysis (GSEA) and tumor mutation burden (TMB) analysis were performed. Afterwards, immune checkpoint genes (ICGs) and the tumor immune dysfunction and exclusion (TIDE) algorithm, together with IMvigor210 and GSE78220 cohorts, were applied to comprehensively explore the role of OSRG signature in immunotherapy. Further, the CellMiner and Genomics of Drug Sensitivity in Cancer (GDSC) databases were also applied in investigating the significance of OSRG signature in chemotherapy. Results: Altogether, 34 prognostic OSRGs were identified, among which 14 were chosen to establish the most valuable prognostic signature. The Kaplan-Meier (KM) analysis suggested that patients with lower OS-related risk score had better prognosis. The area under the curve (AUC) values were 0.71, 0.76, and 0.85 in 3, 5, and 7 years separately, and the stability of this prognostic signature was confirmed in three GEO datasets. As revealed by GSEA and TMB analysis results, OC patients in low-risk group might have better immunotherapeutic response, which was consistent with ICG expression and TIDE analyses. Moreover, both IMvigor210 and GSE78220 cohorts demonstrated that patients with lower OS-related risk score were more likely to benefit from anti-PD-1/L1 immunotherapy. In addition, the association between prognostic signature and drug sensitivity was explored. Conclusion: According to our results in this work, OSRG signature can act as a powerful prognostic predictor for OC, which contributes to generating more individualized therapeutic strategies for OC patients.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Prognóstico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Imunoterapia , Estresse Oxidativo , Biomarcadores , Biomarcadores Tumorais/genética
5.
Ann Transl Med ; 10(2): 126, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35282039

RESUMO

Background: Alternative splicing (AS) plays an essential role in tumorigenesis and progression. This study intended to construct an innovative prognostic model based on AS events to gain more precise survival prediction and search for potential therapeutic targets in ovarian cancer. Methods: Seven types of AS events in ovarian serous cystadenocarcinoma (OV) patients with RNA-seq were obtained using The Cancer Genome Atlas (TCGA) SpliceSeq tool and database. Cox and Kaplan-Meier curve analyses were employed to establish the prognostic models. Relying on drug sensitivity data from the CellMiner database, Genomics of Drug Sensitivity (GDS) was adopted to estimate the platinum-sensitive analysis. Furthermore, a prognostic splicing factor (SF)-AS network was constructed using Cytoscape. Finally, in order to explore the influence of the tumor microenvironment on the prognosis of OV patients, we first combined a similar network fusion and consensus clustering (SNF-CC) algorithm to identify three OV subtypes based on survival-related AS events and then utilized single-sample Gene Set Enrichment Analysis (ssGSEA) method to perform immune cell infiltration analysis. Results: A total of 48,049 AS events and 21,841 related genes were selected from 318 OV samples, and 2,206 AS events associated with disease-free survival (DFS) were identified. Multivariate Cox and Kaplan-Meier curve analyses were then employed to establish the prognostic models. Receiver operating characteristic (ROC) analysis from 0.59 to 0.75 showed that these models were highly efficient in distinguishing patient survival. GDS was adopted with the CellMiner database to provide some insights for platinum-sensitive analysis of OV. Furthermore, a prognostic SF-AS network, which discovered a significant connection between SFs and prognostic AS genes, was constructed using Cytoscape. The combined SNF-CC algorithm revealed three distinct OV subtypes based on the prognostic AS events, and the associations between this novel molecular classification and immune cell infiltration were further explored. Conclusions: We developed a powerful prognostic AS signature for OV and provided a deeper understanding of SF-AS network regulatory mechanisms, as well as platinum-sensitive and cancer immune microenvironments. These results revealed various candidate biomarkers and potential targets for OV treatment strategies.

6.
Mol Carcinog ; 58(11): 2104-2117, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31469189

RESUMO

Small nucleolar RNA host gene 1 (SNHG1) is critical in the progression of cancers. However, the mechanism by which SNHG1 regulates the progression of colorectal cancer (CRC) remains unclear. Expressions of SNHG1 and miR-137 in CRC tissues and cell lines were evaluated by quantitative real-time polymerase chain reaction. A luciferase reporter gene assay was conducted to investigate miR-137 target. Additionally, RNA pull-down assay was performed to explore the physical association between miR-137, SNHG1, and RNA induced silencing complex (RISC). Cell cycling and invasion were examined by flow cytometry (FCM) and transwell assays. The in vivo carcinogenic activity of SNHG1 was examined using murine xenograft models. Expression of RICTOR, serine/threonine kinase 1 (AKT), serum and glucocorticoid-inducible kinase 1 (SGK1), p70S6K1, and LC3II/LC3I ratio was examined by Western blot analysis. SNHG1 upregulation was observed in CRC tissues and cell lines, which was associated with the lymph node metastasis, advanced TNM stage and poorer prognosis. SNHG1 increased RICTOR level in CRC via sponging miR-137. In addition, SNHG1 silencing inhibited CRC cell proliferation and migration in vitro and in vivo. SNHG1 regulated RICTOR expression by sponging miR-137 and promoted tumorgenesis in CRC.


Assuntos
Neoplasias Colorretais/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Animais , Apoptose/genética , Carboxipeptidases/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética
7.
Cell Death Discov ; 4: 61, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29844931

RESUMO

Preclinical data have revealed the inhibitory effect of dasatinib on colon cancer. However, a combination of dasatinib and conventional chemotherapy has failed to show any meaningful outcome in a series of clinical trials. We, therefore, wondered whether Src kinase inhibitors were suitable for treating colon cancer in combination with chemotherapy drugs. This study was designed to explore whether dasatinib disturbed 5-Fu-triggered apoptosis in colon carcinoma. As a result, we established that Src was able to directly phosphorylate caspase-9 at tyrosine 251, leading to elevated caspase-9 activity. Dasatinib dramatically decreased 5-Fu triggered apoptosis in colon carcinoma via suppression of Src activation. Our findings may have partially explained why dasatinib combined with FOLFOX failed to show a meaningful clinical response in mCRC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA