Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 71(1): 211-222, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36538414

RESUMO

The botanical pesticide rotenone can effectively control target pest Plutella xylostella, yet insights into in situ metabolic regulation of P. xylostella toward rotenone remain limited. Herein, we demonstrated metabolic expression levels and spatial distribution of rotenone-treated P. xylostella using spatial metabolomics and lipidomics. Specifically, rotenone significantly affected purine and amino acid metabolisms, indicating that adenosine monophosphate and inosine were distributed in the whole body of P. xylostella with elevated levels, while guanosine 5'-monophosphate and tryptophan were significantly downregulated. Spatial lipidomics results indicated that rotenone may significantly destroy glycerophospholipids in cell membranes of P. xylostella, inhibit fatty acid biosynthesis, and consume diacylglycerol to enhance fat oxidation. These findings revealed that high toxicity of rotenone toward P. xylostella may be ascribed to negative effects on energy production and amino acid synthesis and damage to cell membranes, providing guidelines for the toxicity mechanism of rotenone on target pests and rational development of botanical pesticide candidates.


Assuntos
Inseticidas , Mariposas , Praguicidas , Animais , Rotenona/toxicidade , Lipidômica , Inseticidas/farmacologia , Praguicidas/metabolismo , Aminoácidos/metabolismo , Larva
2.
Artigo em Inglês | MEDLINE | ID: mdl-35055615

RESUMO

Cadmium is a toxic element with a half-life of several decades, which can accumulate in the human body by entering the food chain and seriously harm health. The cadmium adsorption and desorption processes in the soil directly affect the migration, transformation, bioavailability, and ecotoxicity of this element in soil-plant systems. Coastal zones are located in the transitional zone between land and sea, and large amounts of terrigenous material input have important environmental effects on this ecosystem. The pH, hydrodynamic conditions, soil organic matter (SOM), and other factors defining the sea-land interaction within the sedimentary environment are significantly different from those defining land facies. In order to study the key factors affecting cadmium adsorption in soils at the sea-land interface in the Nansha area of the Pearl River Delta, a test was conducted on a column of undisturbed soil. The results showed that the adsorption constant KF and the Cd2+ adsorption capacity of marine soils were higher than those of terrestrial soils. However, the saturation adsorption of cadmium in terrestrial sediments was higher than in marine sediments. Soil pH was an important factor affecting cadmium adsorption capacity in both terrestrial and ma-rine sediments. Neutral and alkaline topsoil conditions inhibited the vertical migration of cadmium, while the acidic environment favored it. The higher the clay and SOM were, the stronger the Cd2+ adsorption capacity of the soil was. These findings suggest that the distribution of cadmium in marine and continental sedimentary soils is not only related to adsorption, but also to the physical and chemical processes occurring in different sedimentary environments.


Assuntos
Poluentes do Solo , Solo , Adsorção , Cádmio/análise , Ecossistema , Monitoramento Ambiental , Humanos , Concentração de Íons de Hidrogênio , Rios , Poluentes do Solo/análise
3.
J Am Chem Soc ; 143(51): 21648-21656, 2021 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-34913337

RESUMO

Exploring the three-dimensional (3D) drug distribution within a single cell at nanoscale resolution with mass spectrometry imaging (MSI) techniques is crucial in cellular biology, yet it remains a great challenge due to limited lateral resolution, detection sensitivities, and reconstruction problems. Herein, a microlensed fiber laser desorption post-ionization time-of-flight mass spectrometer (MLF-LDPI-TOFMS) was developed for the 3D imaging of two anticancer drugs within single cells at a 500 × 500 × 500 nm3 voxel resolution. Nanoscale desorption was obtained with a microlensed fiber (MLF), and a 157 nm post-ionization laser was introduced to enhance the ionization yield. Furthermore, a new type of alignment method for 3D reconstruction was developed on the basis of our embedded uniform circular polystyrene microspheres (PMs). Our findings demonstrate that this 3D imaging technique has the potential to provide information about the 3D distributions of specific molecules at the nanoscale level.


Assuntos
Imageamento Tridimensional/métodos , Nanotecnologia , Análise de Célula Única/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Antineoplásicos/química , Células HeLa , Humanos , Azul de Metileno/química , Microesferas , Poliestirenos , Proflavina/química
4.
J Med Chem ; 64(21): 15582-15592, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34623802

RESUMO

The "inverse drug discovery" strategy is a potent means of exploring the cellular targets of latent electrophiles not typically used in medicinal chemistry. Cyclopropenone, a powerful electrophile, is generally used in bio-orthogonal reactions mediated by triarylphosphine or in photo-triggered cycloaddition reactions. Here, we have studied, for the first time, the proteome reactivity of cyclopropenones in live cells and discovered that the cyclopropenone warhead can specifically and efficiently modify a triple-negative breast cancer driver, glutathione S-transferase pi-1 (GSTP1), by covalently binding at the catalytic active site. Further structure optimization and signaling pathway validation have led to the discovery of potent inhibitors of GSTP1.


Assuntos
Antineoplásicos/farmacologia , Ciclopropanos/farmacologia , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Glutationa S-Transferase pi/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciclopropanos/síntese química , Ciclopropanos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Glutationa S-Transferase pi/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
5.
Chem Sci ; 12(14): 5209-5215, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-34168774

RESUMO

Cysteine represents an attractive target for peptide/protein modification due to the intrinsic high nucleophilicity of the thiol group and low natural abundance. Herein, a cleavable and tunable covalent modification approach for cysteine containing peptides/proteins with our newly designed aryl thioethers via a S N Ar approach was developed. Highly efficient and selective bioconjugation reactions can be carried out under mild and biocompatible conditions. A series of aryl groups bearing different bioconjugation handles, affinity or fluorescent tags are well tolerated. By adjusting the skeleton and steric hindrance of aryl thioethers slightly, the modified products showed a tunable profile for the regeneration of the native peptides.

6.
ACS Appl Mater Interfaces ; 13(13): 14928-14937, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33759491

RESUMO

In order to achieve safe and high-efficient photodynamic therapy (PDT), it was a powerful strategy of constructing O2-generated nanozyme with intelligent "off/on" modulation and enhancement. Herein, a kind of H2O2-responsive nanozyme was developed for off/on modulation and enhancement of magnetic resonance (MR) imaging and PDT, in which great amounts of gold nanoclusters (AuNCs) were loaded into mesoporous silica to form nanoassembly, and manganese dioxide (MnO2) nanosheets were wrapped as switching shield shell (AuNCs@mSiO2@MnO2). In a neutral physiological environment, stable MnO2 shells eliminated singlet oxygen (1O2) generation to switch off PDT and MR imaging. However, in an acidic tumor microenvironment, the MnO2 shell reacted with H2O2, in which MnO2 degradation switched on MR imaging and PDT, and the generated O2 further enhanced PDT. H2O2-responsive MnO2 degradation brought about excellent MR imaging with a longitudinal relaxation rate of 25.31 mM-1 s-1, and simultaneously sufficient O2 generation guaranteed a 74% high 1O2 yield. Under the irradiation of a 635 nm laser, the viability of MDA-MB-435 cells was reduced to 4%, and the tumors completely disappeared, demonstrating strong PDT performance. Therefore, H2O2-responsive AuNCs@mSiO2@MnO2 nanozyme showed excellent off/on modulation and enhancement of MR imaging and PDT and was a promising intelligent nanoprobe for safe and high-efficiency theranostics.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Ouro/uso terapêutico , Compostos de Manganês/uso terapêutico , Nanopartículas/uso terapêutico , Óxidos/uso terapêutico , Fármacos Fotossensibilizantes/uso terapêutico , Animais , Linhagem Celular Tumoral , Feminino , Ouro/química , Humanos , Peróxido de Hidrogênio/metabolismo , Imageamento por Ressonância Magnética , Compostos de Manganês/química , Camundongos , Camundongos Nus , Nanopartículas/química , Óxidos/química , Fotoquimioterapia , Fármacos Fotossensibilizantes/química
7.
Sci Total Environ ; 774: 145170, 2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-33607427

RESUMO

Honeybees are essential for the pollination of a wide variety of crops and flowering plants, whereas they are confronting decline around the world due to the overuse of pesticides, especially neonicotinoids. The mechanism behind the negative impacts of neonicotinoids on honeybees has attracted considerable interest, yet it remains unknown due to the limited insights into the spatiotemporal distribution of pesticides in honeybees. Herein, we demonstrated the use of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) for the spatiotemporal visualization of neonicotinoids, such as N-nitroguanidine (dinotefuran) and N-cyanoamidine (acetamiprid) compounds, administered by oral application or direct contact, in the whole-body section of honeybees. The MSI results revealed that both dinotefuran and acetamiprid can quickly penetrate various biological barriers and distribute within the whole-body section of honeybees, but acetamiprid can be degraded much faster than dinotefuran. The degradation rate of acetamiprid is significantly decreased when piperonyl butoxide (PBO) is applied, whereas that of dinotefuran remains almost unchanged. These two factors might contribute to the fact that dinotefuran affords a higher toxicity to honeybees than acetamiprid. Moreover, the toxicity and degradation rate of acetamiprid can be affected by co-application with tebuconazole. Taken together, the results presented here indicate that the discrepant toxicity between dinotefuran and acetamiprid does not lie in the difference in their penetration of various biological barriers of honeybees, but in the degradation rate of neonicotinoid pesticides within honeybee tissues. Moreover, new perspectives are given to better understand the causes of the current decline in honeybee populations posed by insecticides, providing guidelines for the precise use of conventional agrochemicals and the rational design of novel pesticide candidates.


Assuntos
Inseticidas , Praguicidas , Animais , Abelhas , Inseticidas/toxicidade , Espectrometria de Massas , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Praguicidas/análise , Praguicidas/toxicidade
8.
RSC Adv ; 11(58): 36502-36510, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-35494361

RESUMO

Immunoglobulin G (IgG) antibodies are an important class of biotherapeutics that target various diseases, such as cancers, neurodegenerative disorders, and autoimmune diseases, yet rapid discrimination of IgG antibodies remains a great challenge due to heterogeneity, flexibility, and large size. Herein, we demonstrate a simplified multicharge-state collision-induced unfolding (CIU) method for rapid differentiation of four IgG isotypes that differ in terms of the numbers and patterns of disulfide bonds, bypassing tedious single charge-state selection in advance. The results presented herein reveal that gas-phase unfolding behaviors have a strong dependence on charge states outside IgG surfaces; therefore, multicharge-state CIU analysis of IgG subtypes could offer a great opportunity to gain deeper insights into their gas-phase structural differentiation. The full discrimination of IgG antibody isoforms that possess different disulfide bond numbers and even subtle disulfide bonding patterns can be achieved based on their charge-dependent gas-phase unfolding behaviors and root-mean square deviation in CIU difference spectra. Taken together, the incorporation of all charge states observed in a native ion mobility-mass spectrometry (IM-MS) experiment to CIU analysis could make this strategy sensitive to more subtle structural discrepancies, facilitating the rapid discrimination and evaluation of innovative structurally similar biotherapeutic candidates with unexplored functions.

9.
J Mater Chem B ; 9(2): 314-321, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33305301

RESUMO

Multifunctional nanoprobes with tumor microenvironment response are playing important roles in highly efficient theranostics of cancers. Herein, a kind of theranostic nanoprobe was synthesized by coating manganese dioxide (MnO2) on the surface of black commercial P25 titanium dioxide (b-P25). The resultant nanoprobe (b-P25@MnO2) possessed glutathione (GSH)-responsive magnetic resonance (MR) imaging and enhanced photothermal therapy (PTT). In tumor microenvironments, the excessive GSH was consumed by reacting with MnO2 to generate Mn2+ for GSH-responsive MR imaging, in which the longitudinal relaxation rate of b-P25@MnO2 was up to 30.44 mM-1 s-1, showing excellent cellular and intratumoral MR imaging. Moreover, the prepared b-P25@MnO2 exhibited stable and strong photothermal conversion capability with a high photothermal conversion efficiency of 30.67%, by which the 4T1 tumors disappeared completely, indicating safe and highly efficient PTT performance. The current work developed GSH-responsive b-P25@MnO2 nanoprobes, demonstrated for MR imaging and enhanced PTT in cancers.


Assuntos
Glutationa/metabolismo , Imageamento por Ressonância Magnética/métodos , Compostos de Manganês/química , Óxidos/química , Terapia Fototérmica/métodos , Titânio/química , Humanos
10.
Nanoscale ; 12(43): 22173-22184, 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33135699

RESUMO

Metastasis is the main cause of treatment failure in breast cancer, and integrated phototheranostics is a promising strategy to achieve both precision theranostics and metastasis inhibition. In this work, a multifunctional phototheranostic nanoprobe composed of chlorin e6 (Ce6)-conjugated and polydopamine (PDA)-coated gold nanostars (AuNSs) was synthesized for simultaneous photoacoustic (PA) imaging, photothermal therapy (PTT) and photodynamic therapy (PDT). Under the irradiation of near infrared laser, AuNSs@PDA showed enhanced photothermal conversion and amplified PA imaging performance, compared with single AuNSs. By the covalent conjugation of Ce6, the AuNSs@PDA-Ce6 nanoprobe showed robust stability and excellent singlet oxygen (1O2) generation ability. Under the combination of PTT/PDT, the AuNSs@PDA-Ce6 nanoprobes significantly reduced the growth of 4T1 tumors and suppressed their lung metastasis. All the results demonstrated the considerable potential of AuNSs@PDA-Ce6 phototheranostic nanoprobes for precision theranostics and metastasis inhibition of breast cancer.


Assuntos
Neoplasias da Mama , Neoplasias Pulmonares , Técnicas Fotoacústicas , Fotoquimioterapia , Porfirinas , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Clorofilídeos , Ouro , Humanos , Indóis , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/terapia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Polímeros
11.
Angew Chem Int Ed Engl ; 59(41): 17864-17871, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32602223

RESUMO

The visualization of temporal and spatial changes in the intracellular environment has great significance for chemistry and bioscience research. Mass spectrometry imaging (MSI) plays an important role because of its unique advantages, such as being label-free and high throughput, yet it is a challenge for laser-based techniques due to limited lateral resolution. Here, we develop a simple, reliable, and economic nanoscale MSI approach by introducing desorption laser with a micro-lensed fiber. Using this integrated platform, we achieved 300 nm resolution MSI and successfully visualized the distribution of various small-molecule drugs in subcellular locations. Exhaustive dynamic processes of anticancer drugs, including releasing from nanoparticle carriers entering nucleus of cells, can be readily acquired on an organelle scale. Considering the simplicity and universality of this nanoscale desorption device, it could be easily adapted to most of laser-based mass spectrometry applications.


Assuntos
Espectrometria de Massas/métodos , Preparações Farmacêuticas/metabolismo , Frações Subcelulares/metabolismo , Lasers
12.
ACS Appl Mater Interfaces ; 12(13): 14866-14875, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32153178

RESUMO

Light-responsive nanoprobes were suffering from the threat of high-dose laser irradiation, and it was important for constructing new nanoprobes for safe and efficient phototheranostics. Here, polydopamine (PDA)-coated gold nanobipyramids (AuNBPs@PDA) were synthesized for amplified photoacoustic (PA) signal and enhanced photothermal conversion with low-dose laser irradiation and then doxorubicin (DOX)-loaded AuNBPs@PDA-DOX nanoprobes were constructed for PA imaging-guided synergistic photothermal therapy (PTT) and chemotherapy. The AuNBPs@PDA nanoparticles possessed higher photothermal conversion efficiency (42.07%) and stronger PA signal than those of AuNBP nanoparticles, and the AuNBPs@PDA-DOX nanoprobes showed dual-responsive DOX release of pH and photothermal stimulation. With low-dose laser irradiation (1.0 W/cm2) and low-concentration AuNBPs@PDA-DOX (60 µg/mL), the 4T1 cell viability was reduced to about 5%, owing to the combination of PTT and chemotherapy, compared with 42.3% of single chemotherapy and 25.3% of single PTT. Moreover, by modeling 4T1 tumor-bearing nude mice, in vivo PA imaging was achieved and the tumors were completely inhibited, demonstrating the excellent synergistic effect of PTT/chemotherapy. Therefore, the developed AuNBPs@PDA-DOX nanoprobes can be used for phototheranostics and synergistic chemotherapy, achieving low-dose laser irradiation and high-efficient visualized theranostics.


Assuntos
Antibióticos Antineoplásicos/química , Ouro/química , Indóis/química , Nanoestruturas/química , Neoplasias/terapia , Polímeros/química , Animais , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/uso terapêutico , Peso Corporal/efeitos dos fármacos , Peso Corporal/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Portadores de Fármacos/química , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Feminino , Humanos , Lasers , Camundongos , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Técnicas Fotoacústicas , Fototerapia , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Nanoscale ; 12(3): 1801-1810, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31898712

RESUMO

Black titanium dioxide (TiO2) nanoparticles have attracted great attention due to their application in photothermal therapy (PTT). However, single-mode phototherapy has the risk of recurrence, and the high-dose laser usually imposed to improve the PTT performance can bring a potential threat to security. Here, polydopamine (PDA)-coated black TiO2 (b-P25@PDA) nanoparticles with a core-shell structure were synthesized for enhanced PTT; then, synergistic phototherapy nanoprobes (b-P25@PDA-Ce6 (Mn)) were constructed by coupling chlorin e6 (Ce6) and chelating Mn2+ for simultaneous photodynamic therapy (PDT)/PTT and magnetic resonance (MR) imaging, in which a low-dose laser was used and imaging-guided phototherapy with high efficiency and high safety was achieved. The prepared nanoprobes showed high photothermal conversion efficiency (32.12%), high reactive oxygen generation and excellent MR imaging. In the 4T1 tumor-bearing nude mouse model, the tumors completely disappeared under the combination of PDT/PTT with a low-dose laser but were only partially inhibited by single PDT and single PTT. The current work developed a multifunctional black TiO2-based nanoprobe for enhanced synergistic PDT/PTT and MR imaging, which will be important for the safe and efficient visualized theranostics of cancers.


Assuntos
Meios de Contraste , Indóis , Imageamento por Ressonância Magnética , Neoplasias Mamárias Animais , Manganês , Nanopartículas , Fototerapia , Polímeros , Porfirinas , Titânio , Animais , Linhagem Celular Tumoral , Clorofilídeos , Meios de Contraste/química , Meios de Contraste/farmacologia , Feminino , Indóis/química , Indóis/farmacologia , Neoplasias Mamárias Animais/diagnóstico por imagem , Neoplasias Mamárias Animais/tratamento farmacológico , Manganês/química , Manganês/farmacologia , Camundongos , Nanopartículas/química , Nanopartículas/uso terapêutico , Polímeros/química , Polímeros/farmacologia , Porfirinas/química , Porfirinas/farmacologia , Titânio/química , Titânio/farmacologia
14.
Anal Chem ; 90(22): 13222-13228, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30346138

RESUMO

Among various ionization sources for mass spectrometry, microsecond pulsed glow discharge (MP-GD) and buffer-gas-assisted laser ionization (BGA-LI) sources have the potential for direct quantitative elemental analysis of solids without the requirement of standard reference materials. The analytical potential of these two ionization sources has been evaluated by coupling them to orthogonal time-of-flight mass spectrometry (MS). A straightforward method was proposed to achieve the quantitative result: if a spectrum contains little interference and elemental peak currents are proportional to their concentrations, then the molar concentration of each element is equal to its ion current proportion in the total ion current. Two series of metal standards were applied for the evaluation. Explicit spectra with little interference can be acquired by both techniques. The interferences contribute only a very small portion to the total ion current for MP-GD-MS and BGA-LI-MS; therefore, their influence on the quantitative result can be ignored. All metal elements can be determined quite accurately by the proposed quantitation method, while gaps exist for nonmetal elements due to the high ionization potentials or gas species interference. Between the two techniques, BGA-LI-MS offers a more accurate quantitative result, primarily due to its higher plasma temperature.

15.
Analyst ; 138(10): 2964-9, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23539509

RESUMO

Ions in Matrix-Assisted Laser Desorption/Ionization (MALDI) are predominantly singly charged for small analyte molecules. With the estimated high number density and low temperature of electrons, the three-body recombination mechanism is attractive and should be considered as an important cause for the charge reduction in the plume. Theoretical calculations indicate that the rate coefficient of the three-body recombination is about 50 times higher than that of the two-body recombination if the analyte molecule has insufficient degrees of freedom. Experimental results show that, for small analyte molecules, the ratio of AH2(2+)/AH(+) is close to the theoretical 5% value from the three-body recombination modeling and this ratio declines with the increasing electron and matrix molecule number density caused by greater laser irradiance. The ratio of [A + 2](+)/[A + 1](+) is higher than the theoretical isotopic value, and the excess [A + 2](+) could exclusively result from the three-body recombination collisions. Further evidence demonstrates that [A + 2](+)/[A + 1](+) increases with electron number density, which is in correspondence with the model. All of these theoretical and experimental results indicate that three-body recombination is an essential charge reduction mechanism for small molecules in the MALDI plume.


Assuntos
Bacitracina/análise , Ácidos Cumáricos/química , Gentisatos/química , Muramidase/análise , Proteína Oncogênica pp60(v-src)/análise , Fragmentos de Peptídeos/análise , Lasers , Muramidase/metabolismo , Oxirredução , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA