Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 4610, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941149

RESUMO

ChAdOx1 nCoV-19 (AZD1222) is a replication-deficient simian adenovirus-vectored vaccine encoding the spike (S) protein of SARS-CoV-2, based on the first published full-length sequence (Wuhan-1). AZD1222 has been shown to have 74% vaccine efficacy against symptomatic disease in clinical trials. However, variants of concern (VoCs) have been detected, with substitutions that are associated with a reduction in virus neutralizing antibody titer. Updating vaccines to include S proteins of VoCs may be beneficial, even though current real-world data is suggesting good efficacy following boosting with vaccines encoding the ancestral S protein. Using the Syrian hamster model, we evaluate the effect of a single dose of AZD2816, encoding the S protein of the Beta VoC, and efficacy of AZD1222/AZD2816 as a heterologous primary series against challenge with the Beta or Delta variant. Minimal to no viral sgRNA could be detected in lungs of vaccinated animals obtained at 3- or 5- days post inoculation, in contrast to lungs of control animals. In Omicron-challenged hamsters, a single dose of AZD2816 or AZD1222 reduced virus shedding. Thus, these vaccination regimens are protective against the Beta, Delta, and Omicron VoCs in the hamster model.


Assuntos
COVID-19 , Vacinas Virais , Animais , Anticorpos Antivirais , COVID-19/prevenção & controle , ChAdOx1 nCoV-19 , Cricetinae , Humanos , Mesocricetus , SARS-CoV-2
2.
Res Sq ; 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35194602

RESUMO

ChAdOx1 nCoV-19 (AZD1222) is a replication-deficient simian adenovirusâ€"vectored vaccine encoding the spike (S) protein of SARS-CoV-2, based on the first published full-length sequence (Wuhan-1). AZD1222 was shown to have 74% vaccine efficacy (VE) against symptomatic disease in clinical trials and over 2.5 billion doses of vaccine have been released for worldwide use. However, SARS-CoV-2 continues to circulate and consequently, variants of concern (VoCs) have been detected, with substitutions in the S protein that are associated with a reduction in virus neutralizing antibody titer. Updating vaccines to include S proteins of VoCs may be beneficial over boosting with vaccines encoding the ancestral S protein, even though current real-world data is suggesting good efficacy against hospitalization and death following boosting with vaccines encoding the ancestral S protein. Using the Syrian hamster model, we evaluated the effect of a single dose of AZD2816, encoding the S protein of the Beta VoC, and efficacy of AZD1222/AZD2816 as a heterologous primary series against challenge with the Beta or Delta variant. We then investigated the efficacy of a single dose of AZD2816 or AZD1222 against the Omicron VoC. As seen previously, minimal to no viral sgRNA could be detected in lungs of vaccinated animals obtained at 5 days post inoculation, in contrast to lungs of control animals. Thus, these vaccination regimens are protective against the Beta, Delta, and Omicron VoCs in the hamster model.

3.
Virus Res ; 299: 198437, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33901591

RESUMO

Viruses are the primary cause of acute gastroenteritis in children all over the world. Understanding the emergence and genetic variation of these viruses may help to prevent infections. Aichivirus (AiV) is a member of the Kobuvirus genus, which currently contains six officially recognized species: Aichivirus A-F. The species AiV A contains six types including Aichivirus 1 (AiV 1) and eventually, three genotypes have been identified in the human AiV 1 (named A to C). The present study describes the identification and sequencing of the polyprotein gene of a human AiV 1 strain PAK419 via NGS in Pakistani children with acute gastroenteritis. Our study strain PAK419 was classified as AiV 1 genotype A, most commonly found in Japan and Europe, and closely related to non-Japanese and European strains on the phylogenetic tree. PAK419 showed 95-98 % nucleotide sequence identity with strains isolated from Ethiopia (ETH/2016/P4), Australia (FSS693) and China (Chshc7). On phylogenetic observation PAK419 formed a distinct cluster in the AiV 1 genotype A with the above mentioned and other human AiV strains detected around the world (Germany, Brazil, Japan, Thailand, Korea and Vietnam). The data clearly showed that Pakistani AiV strains and human strains identified from all over the world are distinct from Aichivirus strains found in bovine, swine, canine, feline, caprine, ferret, bat, and environmental samples. The distinguishing characteristics of the AiV genome showed a lower probability of inter-genotypic recombination events, which may support the lack of AiV serotypes. PAK419 also had a high content of C nucleotide (37.4 %), as found in previous studies, which could also restrict the possible genetic variation of AiV. This study demonstrate the power of NGS in uncovering unknown gastroenteric etiological agents circulating in the population.


Assuntos
Gastroenterite , Kobuvirus , Infecções por Picornaviridae , Animais , Gatos , Bovinos , Cães , Fezes , Furões , Gastroenterite/epidemiologia , Genótipo , Cabras , Humanos , Kobuvirus/genética , Paquistão/epidemiologia , Filogenia , Infecções por Picornaviridae/veterinária , Suínos
4.
PLoS Pathog ; 17(1): e1009195, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33465158

RESUMO

SARS-CoV-2 emerged in late 2019 and resulted in the ongoing COVID-19 pandemic. Several animal models have been rapidly developed that recapitulate the asymptomatic to moderate disease spectrum. Now, there is a direct need for additional small animal models to study the pathogenesis of severe COVID-19 and for fast-tracked medical countermeasure development. Here, we show that transgenic mice expressing the human SARS-CoV-2 receptor (angiotensin-converting enzyme 2 [hACE2]) under a cytokeratin 18 promoter (K18) are susceptible to SARS-CoV-2 and that infection resulted in a dose-dependent lethal disease course. After inoculation with either 104 TCID50 or 105 TCID50, the SARS-CoV-2 infection resulted in rapid weight loss in both groups and uniform lethality in the 105 TCID50 group. High levels of viral RNA shedding were observed from the upper and lower respiratory tract and intermittent shedding was observed from the intestinal tract. Inoculation with SARS-CoV-2 resulted in upper and lower respiratory tract infection with high infectious virus titers in nasal turbinates, trachea and lungs. The observed interstitial pneumonia and pulmonary pathology, with SARS-CoV-2 replication evident in pneumocytes, were similar to that reported in severe cases of COVID-19. SARS-CoV-2 infection resulted in macrophage and lymphocyte infiltration in the lungs and upregulation of Th1 and proinflammatory cytokines/chemokines. Extrapulmonary replication of SARS-CoV-2 was observed in the cerebral cortex and hippocampus of several animals at 7 DPI but not at 3 DPI. The rapid inflammatory response and observed pathology bears resemblance to COVID-19. Additionally, we demonstrate that a mild disease course can be simulated by low dose infection with 102 TCID50 SARS-CoV-2, resulting in minimal clinical manifestation and near uniform survival. Taken together, these data support future application of this model to studies of pathogenesis and medical countermeasure development.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , COVID-19/patologia , Queratina-18/genética , Enzima de Conversão de Angiotensina 2/imunologia , Animais , COVID-19/imunologia , COVID-19/virologia , Modelos Animais de Doenças , Feminino , Humanos , Queratina-18/imunologia , Pulmão/imunologia , Pulmão/patologia , Linfócitos/imunologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas , SARS-CoV-2/fisiologia , Traqueia/imunologia , Traqueia/virologia
5.
Nature ; 585(7824): 273-276, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32516797

RESUMO

Effective therapies to treat coronavirus disease 2019 (COVID-19) are urgently needed. While many investigational, approved, and repurposed drugs have been suggested as potential treatments, preclinical data from animal models can guide the search for effective treatments by ruling out those that lack efficacy in vivo. Remdesivir (GS-5734) is a nucleotide analogue prodrug with broad antiviral activity1,2 that is currently being investigated in COVID-19 clinical trials and recently received Emergency Use Authorization from the US Food and Drug Administration3,4. In animal models, remdesivir was effective against infection with Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus (SARS-CoV)2,5,6. In vitro, remdesivir inhibited replication of SARS-CoV-27,8. Here we investigate the efficacy of remdesivir in a rhesus macaque model of SARS-CoV-2 infection9. Unlike vehicle-treated animals, macaques treated with remdesivir did not show signs of respiratory disease; they also showed reduced pulmonary infiltrates on radiographs and reduced virus titres in bronchoalveolar lavages twelve hours after the first dose. Virus shedding from the upper respiratory tract was not reduced by remdesivir treatment. At necropsy, remdesivir-treated animals had lower lung viral loads and reduced lung damage. Thus, treatment with remdesivir initiated early during infection had a clinical benefit in rhesus macaques infected with SARS-CoV-2. Although the rhesus macaque model does not represent the severe disease observed in some patients with COVID-19, our data support the early initiation of remdesivir treatment in patients with COVID-19 to prevent progression to pneumonia.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Modelos Animais de Doenças , Macaca mulatta/virologia , Pneumonia Viral/prevenção & controle , Monofosfato de Adenosina/farmacocinética , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/uso terapêutico , Alanina/farmacocinética , Alanina/farmacologia , Alanina/uso terapêutico , Animais , Betacoronavirus/genética , Betacoronavirus/patogenicidade , Líquido da Lavagem Broncoalveolar/virologia , COVID-19 , Infecções por Coronavirus/patologia , Infecções por Coronavirus/fisiopatologia , Análise Mutacional de DNA , Progressão da Doença , Farmacorresistência Viral , Feminino , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/fisiopatologia , Pulmão/virologia , Masculino , Pandemias , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/patologia , Pneumonia Viral/fisiopatologia , Pneumonia Viral/virologia , SARS-CoV-2 , Prevenção Secundária , Fatores de Tempo , Carga Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Eliminação de Partículas Virais/efeitos dos fármacos
6.
mSphere ; 4(1)2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30674646

RESUMO

Diarrhea remains one of the most common causes of deaths in children. A limited number of studies have investigated the prevalence of enteric pathogens in Cameroon, and as in many other African countries, the cause of many diarrheal episodes remains unexplained. A proportion of these unknown cases of diarrhea are likely caused by yet-unidentified viral agents, some of which could be the result of (recent) interspecies transmission from animal reservoirs, like bats. Using viral metagenomics, we screened fecal samples of 221 humans (almost all with gastroenteritis symptoms) between 0 and 89 years of age with different degrees of bat contact. We identified viruses belonging to families that are known to cause gastroenteritis such as Adenoviridae, Astroviridae, Caliciviridae, Picornaviridae, and Reoviridae Interestingly, a mammalian orthoreovirus, picobirnaviruses, a smacovirus, and a pecovirus were also found. Although there was no evidence of interspecies transmission of the most common human gastroenteritis-related viruses (Astroviridae, Caliciviridae, and Reoviridae), the phylogenies of the identified orthoreovirus, picobirnavirus, and smacovirus indicate a genetic relatedness of these viruses identified in stools of humans and those of bats and/or other animals. These findings points out the possibility of interspecies transmission or simply a shared host of these viruses (bacterial, fungal, parasitic, …) present in both animals (bats) and humans. Further screening of bat viruses in humans or vice versa will elucidate the epidemiological potential threats of animal viruses to human health. Furthermore, this study showed a huge diversity of highly divergent novel phages, thereby expanding the existing phageome considerably.IMPORTANCE Despite the availability of diagnostic tools for different enteric viral pathogens, a large fraction of human cases of gastroenteritis remains unexplained. This could be due to pathogens not tested for or novel divergent viruses of potential animal origin. Fecal virome analyses of Cameroonians showed a very diverse group of viruses, some of which are genetically related to those identified in animals. This is the first attempt to describe the gut virome of humans from Cameroon. Therefore, the data represent a baseline for future studies on enteric viral pathogens in this area and contribute to our knowledge of the world's virome. The studies also highlight the fact that more viruses may be associated with diarrhea than the typical known ones. Hence, it provides meaningful epidemiological information on diarrhea-related viruses in this area.


Assuntos
Diarreia/epidemiologia , Fezes/virologia , Viroses/epidemiologia , Vírus/classificação , Vírus/isolamento & purificação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Camarões , Criança , Pré-Escolar , Diarreia/virologia , Transmissão de Doença Infecciosa , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Metagenômica , Pessoa de Meia-Idade , Filogenia , Prevalência , Viroses/virologia , Vírus/genética , Adulto Jovem , Zoonoses/epidemiologia , Zoonoses/virologia
7.
Arch Virol ; 163(6): 1701-1703, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29442227

RESUMO

Using random high-throughput RNA sequencing, the complete coding sequence of a novel picorna-like virus (a 9,228-nt contig containing 212,202 reads) was determined from a blackbird (Turdus merula) infected with Usutu virus. This sequence shares only 36% amino acid sequence identity with its closest homolog, arivirus 1, (an unclassified member of the order Picornavirales), and shares its dicistronic genome arrangement. The new virus was therefore tentatively named "blackbird arilivirus" (ari-like virus). The nearly complete genome sequence consists of at least 9,228 nt and contains two open reading frames (ORFs) encoding the nonstructural polyprotein (2235 amino acids) and structural polyprotein (769 amino acids). Two TaqMan RT-qPCR assays specific for ORF1 confirmed the presence of high levels of this novel virus in the original sample. Nucleotide composition analysis suggests that blackbird arilivirus is of dietary (plant) origin.


Assuntos
Doenças das Aves/virologia , Infecções por Flavivirus/veterinária , Flavivirus/genética , Genoma Viral , Passeriformes/virologia , Infecções por Picornaviridae/veterinária , Picornaviridae/genética , Animais , Bélgica , Mapeamento Cromossômico , Coinfecção , Flavivirus/classificação , Flavivirus/isolamento & purificação , Infecções por Flavivirus/virologia , Fases de Leitura Aberta , Filogenia , Picornaviridae/classificação , Picornaviridae/isolamento & purificação , Infecções por Picornaviridae/virologia , Plantas/virologia , Sequenciamento Completo do Genoma
8.
Virol Rep ; 6: 74-80, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32289018

RESUMO

A number of PVs have been described in bats but to the best of our knowledge not from feces. Using a previously described NetoVIR protocol, Eidolon helvum pooled fecal samples (Eh) were treated and sequenced by Illumina next generation sequencing technology. Two complete genomes of novel PVs (EhPV2 and EhPV3) and 3 partial sequences (BATPV61, BATPV890a and BATPV890b) were obtained and analysis showed that the EhPV2 and EhPV3 major capsid proteins cluster with and share 60-64% nucleotide identity with that of Rousettus aegyptiacus PV1, thus representing new species of PVs within the genus Psipapillomavirus. The other PVs clustered in different branches of our phylogenetic tree and may potentially represent novel species and/or genera. This points to the vast diversity of PVs in bats and in Eidolon helvum bats in particular, therefore adding support to the current concept that PV evolution is more complex than merely strict PV-host co-evolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA