Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Nutr ; 43(6): 1544-1550, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754306

RESUMO

Few prospective studies have investigated the joint effect of lifestyle factors and genetic susceptibility on the risk of irritable bowel syndrome (IBS). This study aims to evaluate the associations of lifestyle and genetic factors with incident IBS in the UK Biobank. We analyzed data from 481,057 participants (54% female) without prevalent IBS at enrollment in the UK Biobank. An overall healthy lifestyle was defined using six modifiable lifestyle factors, including smoking, body mass index (BMI), sleep duration, diet, physical activity, and alcohol consumption, and hence categorized into 'favorable', 'intermediate', and 'unfavorable' lifestyles. A Cox proportional hazard model was used to investigate the association between a healthy lifestyle and incident IBS. Furthermore, we constructed a polygenic risk score (PRS) for IBS and assessed whether lifestyle modified the effect of genetics on the development of IBS. During a median follow-up of 12.1 years, 8645 incident IBS were ascertained. Specifically, among the six modifiable lifestyle factors, adequate sleep demonstrates the greatest protective effect (hazard ratio [HR]: 0.72, 95% CI: 0.69,0.75) against IBS. Compared with a favorable lifestyle, an unfavorable lifestyle was associated with a 56% (95% CI: 46%-67%) increased risk of IBS (P = 8.99 × 10-40). The risk of incident IBS was 12% (95% CI: 4%-21%) higher among those at high genetic risk compared with those at low genetic risk (P = 0.005). When considering the joint effect of lifestyle and genetic susceptibility, the HR nearly doubled among individuals with high genetic risk and unfavorable lifestyle (HR: 1.80; 95% CI:1.51-2.15; P = 3.50 × 10-11) compared to those with low genetic risk and favorable lifestyle. No multiplicative or addictive interaction was observed between lifestyle and genetics. The findings from this study indicated that lifestyle and genetic factors were independently associated with the risk of incident IBS. All these results implicated a possible clinical strategy of lowering the incidence of IBS by advocating a healthy lifestyle.


Assuntos
Predisposição Genética para Doença , Síndrome do Intestino Irritável , Estilo de Vida , Humanos , Síndrome do Intestino Irritável/genética , Síndrome do Intestino Irritável/epidemiologia , Feminino , Masculino , Estudos Prospectivos , Pessoa de Meia-Idade , Incidência , Reino Unido/epidemiologia , Fatores de Risco , Adulto , Modelos de Riscos Proporcionais , Idoso , Sono/genética , Estilo de Vida Saudável , Dieta/estatística & dados numéricos
2.
Front Oncol ; 12: 959892, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36561528

RESUMO

Introduction: Observational studies have reported a relationship between iron status and the risk of prostate cancer. However, it remains uncertain whether the association is causal or due to confounding or reverse causality. To further clarify the underlying causal relationship, we conducted a Mendelian randomization (MR) analysis. Methods: We selected three genetic variants (rs1800562, rs1799945, and rs855791) closely correlated with four iron status biomarkers (serum iron, log-transformed ferritin, transferrin saturation, and transferrin) as instrumental variables. Summary statistics for prostate cancer were obtained from the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome consortium including 79,148 cases and 61,106 controls of European ancestry. The inverse-variance weighted (IVW) method was conducted primarily to estimate the association of genetically predicted iron status and the risk of prostate cancer, supplemented with simple-median, weighted-median and maximum-likelihood methods as sensitivity analysis. MR-Egger regression was used to detect directional pleiotropy. We also conducted a meta-analysis of observational studies to assess the associations between iron status and the risk of prostate cancer. Results: Genetically predicted increased iron status was associated with the decreased risk of prostate cancer, with odds ratio of 0.91 [95% confidence interval (CI): 0.84, 0.99; P = 0.035] for serum iron, 0.81 (95% CI: 0.65, 1.00; P = 0.046) for log- transformed ferritin, 0.94 (95% CI: 0.88, 0.99; P = 0.029) for transferrin saturation, and 1.15 (95% CI: 0.98, 1.35; P = 0.084) for transferrin (with higher transferrin levels representing lower systemic iron status), using the inverse-variance weighted method. Sensitivity analyses produced consistent associations, and MR-Egger regression indicated no potential pleiotropy. Our replication analysis based on FinnGen research project showed compatible results with our main analysis. Results from our meta-analysis similarly showed that serum ferritin [standardized mean difference (SMD): -1.25; 95% CI: -2.34, -0.16; P = 0.024] and transferrin saturation (SMD: -1.19; 95% CI: -2.34, -0.05; P = 0.042) were lower in patients with prostate cancer compared with that in controls. Discussion: Our study suggests a protective role of iron in the risk of prostate cancer, further investigations are required to clarify the underlying mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA