Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Nephrol ; 29(3): 391-400, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26894924

RESUMO

BACKGROUND: Dapagliflozin's antihyperglycemic effects are mediated by inhibition of renal sodium-glucose cotransporter-2; therefore, renal safety of dapagliflozin was assessed. METHODS: Twelve double-blind, placebo-controlled, randomized clinical trials were analyzed up to 24 weeks (N = 4545). Six of the 12 studies included long-term data for up to 102 weeks (N = 3036). Patients with type 2 diabetes with normal or mildly impaired renal function [estimated glomerular filtration rate (eGFR) 60 to <90 mL/min/1.73 m(2)] were treated with dapagliflozin (2.5, 5, or 10 mg/day) or placebo. Renal adverse events (AEs) were assessed. RESULTS: Mean eGFR showed small transient reductions with dapagliflozin at week 1, but returned to near baseline values by week 24 and remained stable to week 102. Mean eGFR changes were not very different for dapagliflozin 2.5, 5 and 10 mg versus placebo at 102 weeks: -0.74, 2.52 and 1.38 versus 1.31 mL/min/1.73 m(2), respectively. Renal AEs were similar in frequency to placebo through 24 weeks (1.4, 1.3, 0.9, and 0.9 %, respectively) and 102 weeks (2.4, 1.8, 1.9 and 1.7 %, respectively). Few were serious (0.2, 0.1, 0 and 0.3 %, respectively, over 102 weeks). The most common renal event was serum creatinine increase. In sub-group analyses in patients ≥65 years of age or those with moderate renal impairment (eGFR 30 to <60 mL/min/1.73 m(2)), renal AEs occurred more frequently with dapagliflozin than placebo. No events of acute tubular necrosis were reported. CONCLUSION: In patients with normal or mildly impaired renal function, dapagliflozin is not associated with increased risk of acute renal toxicity or deterioration of renal function. All trials included in this analysis are registered at ClinicalTrials.gov: NCT00263276, NCT00972244, NCT00528372, NCT00736879, NCT00528879, NCT00855166, NCT00357370, NCT00680745, NCT00683878, NCT00673231, NCT00643851, NCT00859898.


Assuntos
Compostos Benzidrílicos/efeitos adversos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucosídeos/efeitos adversos , Hipoglicemiantes/efeitos adversos , Rim/efeitos dos fármacos , Adulto , Idoso , Pressão Sanguínea/efeitos dos fármacos , Diabetes Mellitus Tipo 2/fisiopatologia , Método Duplo-Cego , Feminino , Taxa de Filtração Glomerular/efeitos dos fármacos , Humanos , Rim/fisiopatologia , Masculino , Pessoa de Meia-Idade
2.
Genetics ; 202(2): 583-99, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26715664

RESUMO

Cell signaling pathways that control proliferation and determine cell fates are tightly regulated to prevent developmental anomalies and cancer. Transcription factors and coregulators are important effectors of signaling pathway output, as they regulate downstream gene programs. In Caenorhabditis elegans, several subunits of the Mediator transcriptional coregulator complex promote or inhibit vulva development, but pertinent mechanisms are poorly defined. Here, we show that Mediator's dissociable cyclin dependent kinase 8 (CDK8) module (CKM), consisting of cdk-8, cic-1/Cyclin C, mdt-12/dpy-22, and mdt-13/let-19, is required to inhibit ectopic vulval cell fates downstream of the epidermal growth factor receptor (EGFR)-Ras-extracellular signal-regulated kinase (ERK) pathway. cdk-8 inhibits ectopic vulva formation by acting downstream of mpk-1/ERK, cell autonomously in vulval cells, and in a kinase-dependent manner. We also provide evidence that the CKM acts as a corepressor for the Ets-family transcription factor LIN-1, as cdk-8 promotes transcriptional repression by LIN-1. In addition, we find that CKM mutation alters Mediator subunit requirements in vulva development: the mdt-23/sur-2 subunit, which is required for vulva development in wild-type worms, is dispensable for ectopic vulva formation in CKM mutants, which instead display hallmarks of unrestrained Mediator tail module activity. We propose a model whereby the CKM controls EGFR-Ras-ERK transcriptional output by corepressing LIN-1 and by fine tuning Mediator specificity, thus balancing transcriptional repression vs. activation in a critical developmental signaling pathway. Collectively, these data offer an explanation for CKM repression of EGFR signaling output and ectopic vulva formation and provide the first evidence of Mediator CKM-tail module subunit crosstalk in animals.


Assuntos
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Receptores ErbB/metabolismo , Complexos Multiproteicos/metabolismo , Transdução de Sinais , Animais , Quinases Ciclina-Dependentes/química , Expressão Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genes Reporter , Modelos Biológicos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA