Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 12197, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806591

RESUMO

Extremophile organisms are known that can metabolize at temperatures down to - 25 °C (psychrophiles) and up to 122 °C (hyperthermophiles). Understanding viability under extreme conditions is relevant for human health, biotechnological applications, and our search for life elsewhere in the universe. Information about the stability and dynamics of proteins under environmental extremes is an important factor in this regard. Here we compare the dynamics of small Fe-S proteins - rubredoxins - from psychrophilic and hyperthermophilic microorganisms, using three different nuclear techniques as well as molecular dynamics calculations to quantify motion at the Fe site. The theory of 'corresponding states' posits that homologous proteins from different extremophiles have comparable flexibilities at the optimum growth temperatures of their respective organisms. Although 'corresponding states' would predict greater flexibility for rubredoxins that operate at low temperatures, we find that from 4 to 300 K, the dynamics of the Fe sites in these homologous proteins are essentially equivalent.


Assuntos
Extremófilos , Ferro , Rubredoxinas , Ferro/metabolismo , Ferro/química , Extremófilos/metabolismo , Rubredoxinas/química , Rubredoxinas/metabolismo , Simulação de Dinâmica Molecular , Temperatura
2.
Inorg Chem ; 62(2): 769-781, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36580657

RESUMO

Continued efforts are made on the development of earth-abundant metal catalysts for dehydrogenation/hydrolysis of amine boranes. In this study, complex [K-18-crown-6-ether][(NO)2Fe(µ-MePyr)(µ-CO)Fe(NO)2] (3-K-crown, MePyr = 3-methylpyrazolate) was explored as a pre-catalyst for the dehydrogenation of dimethylamine borane (DMAB). Upon evolution of H2(g) from DMAB triggered by 3-K-crown, parallel conversion of 3-K-crown into [(NO)2Fe(N,N'-MePyrBH2NMe2)]- (5) and an iron-hydride intermediate [(NO)2(CO)Fe(µ-H)Fe(CO)(NO)2]- (A) was evidenced by X-ray diffraction/nuclear magnetic resonance/infrared/nuclear resonance vibrational spectroscopy experiments and supported by density functional theory calculations. Subsequent transformation of A into complex [(NO)2Fe(µ-CO)2Fe(NO)2]- (6) is synchronized with the deactivated generation of H2(g). Through reaction of complex [Na-18-crown-6-ether][(NO)2Fe(η2-BH4)] (4-Na-crown) with CO(g) as an alternative synthetic route, isolated intermediate [Na-18-crown-6-ether][(NO)2(CO)Fe(µ-H)Fe(CO)(NO)2] (A-Na-crown) featuring catalytic reactivity toward dehydrogenation of DMAB supports a substrate-gated transformation of a pre-catalyst [(NO)2Fe(µ-MePyr)(µ-CO)Fe(NO)2]- (3) into the iron-hydride species A as an intermediate during the generation of H2(g).

3.
Dalton Trans ; 51(46): 17753-17761, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36346270

RESUMO

We have performed and analyzed the first combined 151Eu and 57Fe nuclear resonant vibrational spectroscopy (NRVS) for naturally abundant KEu(III)[Fe(II)(CN)6] and Eu(III)[Fe(III)(CN)6] complexes. Comparison of the observed 151Eu vs.57Fe NRVS spectroscopic features confirms that Eu(III) in both KEu(III)[Fe(II)(CN)6] and Eu(III)[Fe(III)(CN)6] occupies a position outside the [Fe(CN)6] core and coordinates to the N atoms of the CN- ions, whereas Fe(III) or Fe(II) occupies the site inside the [Fe(CN)6]4- core and coordinates to the C atoms of the CN- ions. In addition to the spectroscopic interest, the results from this study provide invaluable insights for the design and evaluation of the nanoparticles of such complexes as potential cellular contrast agents for their use in magnetic resonance imaging. The combined 151Eu and 57Fe NRVS measurements are also among the first few explorations of bi-isotopic NRVS experiments.


Assuntos
Compostos Ferrosos , Ferro , Ferro/química , Análise Espectral
4.
Biochemistry ; 60(31): 2419-2424, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34310123

RESUMO

The human mitochondrial protein, mitoNEET (mNT), belongs to the family of small [2Fe-2S] NEET proteins that bind their iron-sulfur clusters with a novel and characteristic 3Cys:1His coordination motif. mNT has been implicated in the regulation of lipid and glucose metabolisms, iron/reactive oxygen species homeostasis, cancer, and possibly Parkinson's disease. The geometric structure of mNT as a function of redox state and pH is critical for its function. In this study, we combine 57Fe nuclear resonance vibrational spectroscopy with density functional theory calculations to understand the novel properties of this important protein.


Assuntos
Cisteína/química , Ferro/química , Lisina/química , Proteínas Mitocondriais/química , Enxofre/química , Teoria da Densidade Funcional , Humanos , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Vibração
5.
Angew Chem Int Ed Engl ; 57(33): 10605-10609, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-29923293

RESUMO

A combination of nuclear resonance vibrational spectroscopy (NRVS), FTIR spectroscopy, and DFT calculations was used to observe and characterize Fe-H/D bending modes in CrHydA1 [FeFe]-hydrogenase Cys-to-Ser variant C169S. Mutagenesis of cysteine to serine at position 169 changes the functional group adjacent to the H-cluster from a -SH to -OH, thus altering the proton transfer pathway. The catalytic activity of C169S is significantly reduced compared to that of native CrHydA1, presumably owing to less efficient proton transfer to the H-cluster. This mutation enabled effective capture of a hydride/deuteride intermediate and facilitated direct detection of the Fe-H/D normal modes. We observed a significant shift to higher frequency in an Fe-H bending mode of the C169S variant, as compared to previous findings with reconstituted native and oxadithiolate (ODT)-substituted CrHydA1. On the basis of DFT calculations, we propose that this shift is caused by the stronger interaction of the -OH group of C169S with the bridgehead -NH- moiety of the active site, as compared to that of the -SH group of C169 in the native enzyme.


Assuntos
Hidrogenase/química , Domínio Catalítico , Clostridium/enzimologia , Teoria da Densidade Funcional , Desulfovibrio desulfuricans/enzimologia , Hidrogenase/genética , Hidrogenase/metabolismo , Ferro/química , Mutagênese Sítio-Dirigida , Prótons , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Sci Rep ; 7(1): 12558, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28970499

RESUMO

We developed a multi-line time-domain interferometry (TDI) system using 14.4 keV Mössbauer gamma rays with natural energy widths of 4.66 neV from 57Fe nuclei excited using synchrotron radiation. Electron density fluctuations can be detected at unique lengths ranging from 0.1 nm to a few nm on time scales from several nanoseconds to the sub-microsecond order by quasi-elastic gamma-ray scattering (QGS) experiments using multi-line TDI. In this report, we generalize the established expression for a time spectrum measured using an identical single-line gamma-ray emitter pair to the case of a nonidentical pair of multi-line gamma-ray emitters by considering the finite energy width of the incident synchrotron radiation. The expression obtained illustrates the unique characteristics of multi-line TDI systems, where the finite incident energy width and use of a nonidentical emitter pair produces further information on faster sub-picosecond-scale dynamics in addition to the nanosecond dynamics; this was demonstrated experimentally. A normalized intermediate scattering function was extracted from the spectrum and its relaxation form was determined for a relaxation time of the order of 1 µs, even for relatively large momentum transfer of ~31 nm-1. The multi-line TDI method produces a microscopic relaxation picture more rapidly and accurately than conventional single-line TDI.

7.
J Am Chem Soc ; 139(46): 16894-16902, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29054130

RESUMO

[FeFe]-hydrogenases are metalloenzymes that reversibly reduce protons to molecular hydrogen at exceptionally high rates. We have characterized the catalytically competent hydride state (Hhyd) in the [FeFe]-hydrogenases from both Chlamydomonas reinhardtii and Desulfovibrio desulfuricans using 57Fe nuclear resonance vibrational spectroscopy (NRVS) and density functional theory (DFT). H/D exchange identified two Fe-H bending modes originating from the binuclear iron cofactor. DFT calculations show that these spectral features result from an iron-bound terminal hydride, and the Fe-H vibrational frequencies being highly dependent on interactions between the amine base of the catalytic cofactor with both hydride and the conserved cysteine terminating the proton transfer chain to the active site. The results indicate that Hhyd is the catalytic state one step prior to H2 formation. The observed vibrational spectrum, therefore, provides mechanistic insight into the reaction coordinate for H2 bond formation by [FeFe]-hydrogenases.


Assuntos
Hidrogênio/metabolismo , Hidrogenase/metabolismo , Ferro/metabolismo , Teoria Quântica , Biocatálise , Domínio Catalítico , Chlamydomonas reinhardtii/enzimologia , Desulfovibrio desulfuricans/enzimologia , Modelos Moleculares , Análise Espectral , Vibração
8.
J Am Chem Soc ; 139(20): 7062-7070, 2017 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-28457126

RESUMO

Binuclear non-heme iron enzymes activate O2 for diverse chemistries that include oxygenation of organic substrates and hydrogen atom abstraction. This process often involves the formation of peroxo-bridged biferric intermediates, only some of which can perform electrophilic reactions. To elucidate the geometric and electronic structural requirements to activate peroxo reactivity, the active peroxo intermediate in 4-aminobenzoate N-oxygenase (AurF) has been characterized spectroscopically and computationally. A magnetic circular dichroism study of reduced AurF shows that its electronic and geometric structures are poised to react rapidly with O2. Nuclear resonance vibrational spectroscopic definition of the peroxo intermediate formed in this reaction shows that the active intermediate has a protonated peroxo bridge. Density functional theory computations on the structure established here show that the protonation activates peroxide for electrophilic/single-electron-transfer reactivity. This activation of peroxide by protonation is likely also relevant to the reactive peroxo intermediates in other binuclear non-heme iron enzymes.


Assuntos
Proteínas de Bactérias/química , Oxigenases/química , Peróxidos/metabolismo , Teoria Quântica , Estrutura Molecular , Peróxidos/química
9.
J Am Chem Soc ; 139(12): 4306-4309, 2017 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-28291336

RESUMO

[FeFe]-hydrogenases catalyze the reversible reduction of protons to molecular hydrogen with extremely high efficiency. The active site ("H-cluster") consists of a [4Fe-4S]H cluster linked through a bridging cysteine to a [2Fe]H subsite coordinated by CN- and CO ligands featuring a dithiol-amine moiety that serves as proton shuttle between the protein proton channel and the catalytic distal iron site (Fed). Although there is broad consensus that an iron-bound terminal hydride species must occur in the catalytic mechanism, such a species has never been directly observed experimentally. Here, we present FTIR and nuclear resonance vibrational spectroscopy (NRVS) experiments in conjunction with density functional theory (DFT) calculations on an [FeFe]-hydrogenase variant lacking the amine proton shuttle which is stabilizing a putative hydride state. The NRVS spectra unequivocally show the bending modes of the terminal Fe-H species fully consistent with widely accepted models of the catalytic cycle.


Assuntos
Hidrogenase/química , Proteínas Ferro-Enxofre/química , Ferro/química , Hidrogenase/metabolismo , Ferro/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Espectroscopia de Ressonância Magnética , Conformação Molecular , Teoria Quântica , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química , Água/metabolismo
10.
J Am Chem Soc ; 138(43): 14294-14302, 2016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27726349

RESUMO

FeIII-(hydro)peroxy intermediates have been isolated in two classes of mononuclear nonheme Fe enzymes that are important in bioremediation: the Rieske dioxygenases and the extradiol dioxygenases. The binding mode and protonation state of the peroxide moieties in these intermediates are not well-defined, due to a lack of vibrational structural data. Nuclear resonance vibrational spectroscopy (NRVS) is an important technique for obtaining vibrational information on these and other intermediates, as it is sensitive to all normal modes with Fe displacement. Here, we present the NRVS spectra of side-on FeIII-peroxy and end-on FeIII-hydroperoxy model complexes and assign these spectra using calibrated DFT calculations. We then use DFT calculations to define and understand the changes in the NRVS spectra that arise from protonation and from opening the Fe-O-O angle. This study identifies four spectroscopic handles that will enable definition of the binding mode and protonation state of FeIII-peroxy intermediates in mononuclear nonheme Fe enzymes. These structural differences are important in determining the frontier molecular orbitals available for reactivity.


Assuntos
Ferro/química , Compostos Organometálicos/química , Vibração , Teoria Quântica , Análise Espectral
11.
Angew Chem Int Ed Engl ; 55(47): 14575-14579, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27778474

RESUMO

The reaction of protein-bound iron-sulfur (Fe-S) clusters with nitric oxide (NO) plays key roles in NO-mediated toxicity and signaling. Elucidation of the mechanism of the reaction of NO with DNA regulatory proteins that contain Fe-S clusters has been hampered by a lack of information about the nature of the iron-nitrosyl products formed. Herein, we report nuclear resonance vibrational spectroscopy (NRVS) and density functional theory (DFT) calculations that identify NO reaction products in WhiD and NsrR, regulatory proteins that use a [4Fe-4S] cluster to sense NO. This work reveals that nitrosylation yields multiple products structurally related to Roussin's Red Ester (RRE, [Fe2 (NO)4 (Cys)2 ]) and Roussin's Black Salt (RBS, [Fe4 (NO)7 S3 ]. In the latter case, the absence of 32 S/34 S shifts in the Fe-S region of the NRVS spectra suggest that a new species, Roussin's Black Ester (RBE), may be formed, in which one or more of the sulfide ligands is replaced by Cys thiolates.


Assuntos
Proteínas Ferro-Enxofre/metabolismo , Ferro/metabolismo , Óxido Nítrico/metabolismo , Óxidos de Nitrogênio/metabolismo , Compostos Nitrosos/metabolismo , Ferro/química , Proteínas Ferro-Enxofre/química , Conformação Molecular , Óxido Nítrico/química , Óxidos de Nitrogênio/química , Teoria Quântica
12.
Inorg Chem ; 55(14): 6866-72, 2016 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-27387959

RESUMO

We used a novel experimental setup to conduct the first synchrotron-based (61)Ni Mössbauer spectroscopy measurements in the energy domain on Ni coordination complexes and metalloproteins. A representative set of samples was chosen to demonstrate the potential of this approach. (61)NiCr2O4 was examined as a case with strong Zeeman splittings. Simulations of the spectra yielded an internal magnetic field of 44.6 T, consistent with previous work by the traditional (61)Ni Mössbauer approach with a radioactive source. A linear Ni amido complex, (61)Ni{N(SiMe3)Dipp}2, where Dipp = C6H3-2,6-(i)Pr2, was chosen as a sample with an "extreme" geometry and large quadrupole splitting. Finally, to demonstrate the feasibility of metalloprotein studies using synchrotron-based (61)Ni Mössbauer spectroscopy, we examined the spectra of (61)Ni-substituted rubredoxin in reduced and oxidized forms, along with [Et4N]2[(61)Ni(SPh)4] as a model compound. For each of the above samples, a reasonable spectrum could be obtained in ∼1 d. Given that there is still room for considerable improvement in experimental sensitivity, synchrotron-based (61)Ni Mössbauer spectroscopy appears to be a promising alternative to measurements with radioactive sources.


Assuntos
Níquel/química , Espectroscopia de Mossbauer/métodos , Síncrotrons , Magnetismo
14.
Sci Rep ; 6: 20861, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26883185

RESUMO

We measured the synchrotron-radiation (SR)-based Mössbauer spectra of Ni-based nanoparticles with a hexagonal structure that were synthesised by chemical reduction. To obtain Mössbauer spectra of the nanoparticles without (61)Ni enrichment, we developed a measurement system for (61)Ni SR-based Mössbauer absorption spectroscopy without X-ray windows between the (61)Ni84V16 standard energy alloy and detector. The counting rate of the (61)Ni nuclear resonant scattering in the system was enhanced by the detection of internal conversion electrons and the close proximity between the energy standard and the detector. The spectrum measured at 4 K revealed the internal magnetic field of the nanoparticles was 3.4 ± 0.9 T, corresponding to a Ni atomic magnetic moment of 0.3 Bohr magneton. This differs from the value of Ni3C and the theoretically predicted value of hexagonal-close-packed (hcp)-Ni and suggested the nanoparticle possessed intermediate carbon content between hcp-Ni and Ni3C of approximately 10 atomic % of Ni. The improved (61)Ni Mössbauer absorption measurement system is also applicable to various Ni materials without (61)Ni enrichment, such as Ni hydride nanoparticles.

15.
Jpn J Appl Phys Pt 1 ; 55(12)2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29503983

RESUMO

A new high-resolution monochromator for 14.4-keV X-rays has been designed and developed for the Fe nuclear resonance vibrational spectroscopy of biological samples. Higher flux and stability are especially important for measuring biological samples, because of the very weak signals produced due to the low concentrations of Fe-57. A 24% increase in flux while maintaining a high resolution below 0.9 meV is achieved in the calculation by adopting an asymmetric reflection of Ge, which is used as the first crystal of the three-bounce high-resolution monochromator. The small cost resulting from a 20% increase of the exit beam size is acceptable to our biological applications. The higher throughput of the new design has been experimentally verified. A fine rotation mechanics that that combines a weak-link hinge with a piezoelectric actuator was used for controlling the photon energy of the monochromatic beam. The resulting stability is sufficient to preserve the intrinsic resolution.

16.
J Synchrotron Radiat ; 22(6): 1334-44, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26524296

RESUMO

Direct spectroscopic evidence for a hydride bridge in the Ni-R form of [NiFe] hydrogenase has been obtained using iron-specific nuclear resonance vibrational spectroscopy (NRVS). The Ni-H-Fe wag mode at 675 cm(-1) is the first spectroscopic evidence for a bridging hydride in Ni-R as well as the first iron-hydride-related NRVS feature observed for a biological system. Although density function theory (DFT) calculation assisted the determination of the Ni-R structure, it did not predict the Ni-H-Fe wag mode at ∼ 675 cm(-1) before NRVS. Instead, the observed Ni-H-Fe mode provided a critical reference for the DFT calculations. While the overall science about Ni-R is presented and discussed elsewhere, this article focuses on the long and strenuous experimental journey to search for and experimentally identify the Ni-H-Fe wag mode in a Ni-R sample. As a methodology, the results presented here will go beyond Ni-R and hydrogenase research and will also be of interest to other scientists who use synchrotron radiation for measuring dilute samples or weak spectroscopic features.


Assuntos
Hidrogênio/química , Hidrogenase/química , Espectroscopia de Ressonância Magnética/métodos , Modelos Químicos , Sítios de Ligação , Simulação por Computador , Ativação Enzimática , Ligação de Hidrogênio , Ligação Proteica
17.
Chem Commun (Camb) ; 50(88): 13469-72, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25237680

RESUMO

A new route to iron carbonyls has enabled synthesis of (57)Fe-labeled [NiFe] hydrogenase mimic (OC)3(57)Fe(pdt)Ni(dppe). Its study by nuclear resonance vibrational spectroscopy revealed Ni-(57)Fe vibrations, as confirmed by calculations. The modes are absent for [(OC)3(57)Fe(pdt)Ni(dppe)](+), which lacks Ni-(57)Fe bonding, underscoring the utility of the analyses in identifying metal-metal interactions.


Assuntos
Complexos de Coordenação/síntese química , Hidrogenase/química , Ferro/química , Modelos Moleculares , Níquel/química , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Hidrogenase/metabolismo , Compostos de Ferro/química , Isótopos de Ferro/química , Espectroscopia de Ressonância Magnética
18.
J Am Chem Soc ; 135(46): 17573-84, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24131208

RESUMO

The class Ic ribonucleotide reductase (RNR) from Chlamydia trachomatis (Ct) utilizes a Mn/Fe heterobinuclear cofactor, rather than the Fe/Fe cofactor found in the ß (R2) subunit of the class Ia enzymes, to react with O2. This reaction produces a stable Mn(IV)Fe(III) cofactor that initiates a radical, which transfers to the adjacent α (R1) subunit and reacts with the substrate. We have studied the Mn(IV)Fe(III) cofactor using nuclear resonance vibrational spectroscopy (NRVS) and absorption (Abs)/circular dichroism (CD)/magnetic CD (MCD)/variable temperature, variable field (VTVH) MCD spectroscopies to obtain detailed insight into its geometric/electronic structure and to correlate structure with reactivity; NRVS focuses on the Fe(III), whereas MCD reflects the spin-allowed transitions mostly on the Mn(IV). We have evaluated 18 systematically varied structures. Comparison of the simulated NRVS spectra to the experimental data shows that the cofactor has one carboxylate bridge, with Mn(IV) at the site proximal to Phe127. Abs/CD/MCD/VTVH MCD data exhibit 12 transitions that are assigned as d-d and oxo and OH(-) to metal charge-transfer (CT) transitions. Assignments are based on MCD/Abs intensity ratios, transition energies, polarizations, and derivative-shaped pseudo-A term CT transitions. Correlating these results with TD-DFT calculations defines the Mn(IV)Fe(III) cofactor as having a µ-oxo, µ-hydroxo core and a terminal hydroxo ligand on the Mn(IV). From DFT calculations, the Mn(IV) at site 1 is necessary to tune the redox potential to a value similar to that of the tyrosine radical in class Ia RNR, and the OH(-) terminal ligand on this Mn(IV) provides a high proton affinity that could gate radical translocation to the α (R1) subunit.


Assuntos
Compostos Férricos/química , Manganês/química , Ribonucleotídeo Redutases/química , Chlamydia trachomatis/enzimologia , Cristalografia por Raios X , Elétrons , Compostos Férricos/metabolismo , Manganês/metabolismo , Modelos Moleculares , Estrutura Molecular , Teoria Quântica , Ribonucleotídeo Redutases/metabolismo
20.
J Phys Chem B ; 116(47): 13831-8, 2012 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-23072485

RESUMO

Nuclear resonance vibrational spectroscopy (NRVS) and density functional theory calculation (DFT) have been applied to illuminate the effect of axial ligation on the vibrational dynamics of iron in heme carbonyl. The analyses of the NRVS data of five- (5c) and six-coordinate (6c) heme-CO complexes indicate that the prominent feature of (57)Fe partial vibrational density of state ((57)FePVDOS) at the 250-300 cm(-1) region is significantly affected by the association of the axial ligand. The DFT calculations predict that the prominent (57)FePVDOS is composed of iron in-plane motions which are coupled with porphyrin pyrrole in-plane (ν(49), ν(50), and ν(53)), an out-of-plane (γ(8)) (two of four pyrrole rings include the in-plane modes, while the rest of pyrrole rings vibrate along the out-of-plane coordinate), and out-of-phase carbonyl C and O atom displacement perpendicular to the Fe-C-O axis. Thus, in the case of the 5c CO-heme the prominent (57)FePVDOS shows sharp and intense feature because of the degeneracy of the e symmetry mode within the framework of C(4v) symmetry molecule, whereas the association of the axial imidazole ligand in the 6c complex with the lowered symmetry results in split of the degenerate vibrational energy as indicated by broader and lower intensity features of the corresponding NRVS peak compared to the 5c structure. The vibrational energy of the iron in-plane motion in the 6c complex is higher than that in 5c, implying that the iron in the 6c complex includes stronger in-plane interaction with the porphyrin compared to 5c. The iron in-plane mode above 500 cm(-1), which is predominantly coupled with the out-of-phase carbonyl C and O atom motion perpendicular to Fe-C-O, called as Fe-C-O bending mode (δ(Fe-C-O)), also suggests that the 6c structure involves a larger force constant for the e symmetry mode than 5c. The DFT calculations along with the NRVS data suggest that the stiffened iron in-plane motion in the 6c complex can be ascribed to diminished pseudo-Jahn-Teller instability along the e symmetry displacement due to an increased a(1)-e orbital energy gap caused by σ* interaction between the iron d(z(2)) orbital and the nitrogen p orbital from the axial imidazole ligand. Thus, the present study implicates a fundamental molecular mechanism of axial ligation of heme in association with a diatomic gas molecule, which is a key primary step toward versatile biological functions.


Assuntos
Heme/química , Ferro/química , Análise Espectral , Vibração , Ligantes , Modelos Moleculares , Conformação Molecular , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA