Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(2): e1011124, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36854028

RESUMO

The prolyl-tRNA synthetase (PRS) is a validated drug target for febrifugine and its synthetic analog halofuginone (HFG) against multiple apicomplexan parasites including Plasmodium falciparum and Toxoplasma gondii. Here, a novel ATP-mimetic centered on 1-(pyridin-4-yl) pyrrolidin-2-one (PPL) scaffold has been validated to bind to Toxoplasma gondii PRS and kill toxoplasma parasites. PPL series exhibited potent inhibition at the cellular (T. gondii parasites) and enzymatic (TgPRS) levels compared to the human counterparts. Cell-based chemical mutagenesis was employed to determine the mechanism of action via a forward genetic screen. Tg-resistant parasites were analyzed with wild-type strain by RNA-seq to identify mutations in the coding sequence conferring drug resistance by computational analysis of variants. DNA sequencing established two mutations, T477A and T592S, proximal to terminals of the PPL scaffold and not directly in the ATP, tRNA, or L-pro sites, as supported by the structural data from high-resolution crystal structures of drug-bound enzyme complexes. These data provide an avenue for structure-based activity enhancement of this chemical series as anti-infectives.


Assuntos
Aminoacil-tRNA Sintetases , Toxoplasma , Toxoplasmose , Humanos , Toxoplasma/genética , Descoberta de Drogas , Aminoacil-tRNA Sintetases/genética , Trifosfato de Adenosina
2.
Mol Biochem Parasitol ; 253: 111530, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36370911

RESUMO

Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes in protein translation machinery that provide the charged tRNAs needed for protein synthesis. Over the past decades, aaRSs have been studied as anti-parasitic, anti-bacterial, and anti-fungal drug targets. This study focused on the cytoplasmic glutamyl-tRNA synthetase (GluRS) from Plasmodium falciparum, which belongs to class Ib in aaRSs. GluRS unlike most other aaRSs requires tRNA to activate its cognate amino acid substrate L-Glutamate (L-Glu), and fails to form an intermediate adenylate complex in the absence of tRNA. The crystal structures of the Apo, ATP, and ADP-bound forms of Plasmodium falciparum glutamyl-tRNA synthetase (PfGluRS) were solved at 2.1 Å, 2.2 Å, and 2.8 Å respectively. The structural comparison of the Apo- and ATP-bound holo-forms of PfGluRS showed considerable conformational changes in the loop regions around the ATP-binding pocket of the enzyme. Biophysical characterization of the PfGluRS showed binding of the enzyme substrates L-Gluand ATP.. The sequence and structural conservation were evident across GluRS compared to other species. The structural dissection of the PfGluRS gives insight into the critical residues involved in the binding of ATP substrate, which can be harvested to develop new antimalarial drugs.


Assuntos
Aminoacil-tRNA Sintetases , Glutamato-tRNA Ligase , Glutamato-tRNA Ligase/genética , Glutamato-tRNA Ligase/química , Glutamato-tRNA Ligase/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/metabolismo , RNA de Transferência/metabolismo , Trifosfato de Adenosina/metabolismo
3.
Sci Rep ; 7(1): 5255, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28701714

RESUMO

Inorganic pyrophosphatases (PPase) participate in energy cycling and they are essential for growth and survival of organisms. Here we report extensive structural and functional characterization of soluble PPases from the human parasites Plasmodium falciparum (PfPPase) and Toxoplasma gondii (TgPPase). Our results show that PfPPase is a cytosolic enzyme whose gene expression is upregulated during parasite asexual stages. Cambialistic PfPPase actively hydrolyzes linear short chain polyphosphates like PPi, polyP3 and ATP in the presence of Zn2+. A remarkable new feature of PfPPase is the low complexity asparagine-rich N-terminal region that mediates its dimerization. Deletion of N-region has an unexpected and substantial effect on the stability of PfPPase domain, resulting in aggregation and significant loss of enzyme activity. Significantly, the crystal structures of PfPPase and TgPPase reveal unusual and unprecedented dimeric organizations and provide new fundamental insights into the variety of oligomeric assemblies possible in eukaryotic inorganic PPases.


Assuntos
Pirofosfatase Inorgânica/química , Pirofosfatase Inorgânica/metabolismo , Fosfotransferases/metabolismo , Plasmodium falciparum/enzimologia , Conformação Proteica , Toxoplasma/enzimologia , Sequência de Aminoácidos , Cristalografia por Raios X , Citosol/metabolismo , Pirofosfatase Inorgânica/genética , Modelos Moleculares , Fosfotransferases/química , Domínios Proteicos , Multimerização Proteica , Homologia de Sequência
4.
J Biol Chem ; 290(51): 30498-513, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26494625

RESUMO

Trypanosoma brucei (T. brucei) is responsible for the fatal human disease called African trypanosomiasis, or sleeping sickness. The causative parasite, Trypanosoma, encodes soluble versions of inorganic pyrophosphatases (PPase), also called vacuolar soluble proteins (VSPs), which are localized to its acidocalcisomes. The latter are acidic membrane-enclosed organelles rich in polyphosphate chains and divalent cations whose significance in these parasites remains unclear. We here report the crystal structure of T. brucei brucei acidocalcisomal PPases in a ternary complex with Mg(2+) and imidodiphosphate. The crystal structure reveals a novel structural architecture distinct from known class I PPases in its tetrameric oligomeric state in which a fused EF hand domain arranges around the catalytic PPase domain. This unprecedented assembly evident from TbbVSP1 crystal structure is further confirmed by SAXS and TEM data. SAXS data suggest structural flexibility in EF hand domains indicative of conformational plasticity within TbbVSP1.


Assuntos
Proteínas de Protozoários/química , Pirofosfatases/química , Trypanosoma brucei brucei/metabolismo , Cristalografia por Raios X , Humanos , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Pirofosfatases/genética , Pirofosfatases/metabolismo , Trypanosoma brucei brucei/genética
5.
Structure ; 23(5): 819-829, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25817387

RESUMO

The Chinese herb Dichroa febrifuga has traditionally treated malaria-associated fever. Its active component febrifugine (FF) and derivatives such as halofuginone (HF) are potent anti-malarials. Here, we show that FF-based derivatives arrest parasite growth by direct interaction with and inhibition of the protein translation enzyme prolyl-tRNA synthetase (PRS). Dual administration of inhibitors that target different tRNA synthetases suggests high utility of these drug targets. We reveal the ternary complex structure of PRS-HF and adenosine 5'-(ß,γ-imido)triphosphate where the latter facilitates HF integration into the PRS active site. Structural analyses also highlight spaces within the PRS architecture for HF derivatization of its quinazolinone, but not piperidine, moiety. We also show a remarkable ability of HF to kill the related human parasite Toxoplasma gondii, suggesting wider HF efficacy against parasitic PRSs. Hence, our cell-, enzyme-, and structure-based data on FF-based inhibitors strengthen the case for their inclusion in anti-malarial and anti-toxoplasmosis drug development efforts.


Assuntos
Aminoacil-tRNA Sintetases/química , Antimaláricos/farmacologia , Piperidinas/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Quinazolinonas/farmacologia , Aminoacil-tRNA Sintetases/metabolismo , Antimaláricos/química , Domínio Catalítico/efeitos dos fármacos , Cristalografia , Humanos , Modelos Moleculares , Complexos Multiproteicos/química , Piperidinas/química , Plasmodium falciparum/química , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Quinazolinonas/química , Relação Estrutura-Atividade , Toxoplasma/química , Toxoplasma/efeitos dos fármacos , Toxoplasma/enzimologia
6.
Antimicrob Agents Chemother ; 59(4): 1856-67, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25583729

RESUMO

Aminoacyl-tRNA synthetases (aaRSs) are housekeeping enzymes that couple cognate tRNAs with amino acids to transmit genomic information for protein translation. The Plasmodium falciparum nuclear genome encodes two P. falciparum methionyl-tRNA synthetases (PfMRS), termed PfMRS(cyt) and PfMRS(api). Phylogenetic analyses revealed that the two proteins are of primitive origin and are related to heterokonts (PfMRS(cyt)) or proteobacteria/primitive bacteria (PfMRS(api)). We show that PfMRS(cyt) localizes in parasite cytoplasm, while PfMRS(api) localizes to apicoplasts in asexual stages of malaria parasites. Two known bacterial MRS inhibitors, REP3123 and REP8839, hampered Plasmodium growth very effectively in the early and late stages of parasite development. Small-molecule drug-like libraries were screened against modeled PfMRS structures, and several "hit" compounds showed significant effects on parasite growth. We then tested the effects of the hit compounds on protein translation by labeling nascent proteins with (35)S-labeled cysteine and methionine. Three of the tested compounds reduced protein synthesis and also blocked parasite growth progression from the ring stage to the trophozoite stage. Drug docking studies suggested distinct modes of binding for the three compounds, compared with the enzyme product methionyl adenylate. Therefore, this study provides new targets (PfMRSs) and hit compounds that can be explored for development as antimalarial drugs.


Assuntos
Antimaláricos/farmacologia , Metionina tRNA Ligase/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Inibidores da Síntese de Proteínas/farmacologia , Animais , Antimaláricos/síntese química , Benzopiranos/farmacologia , Simulação por Computador , Citoplasma/metabolismo , Diaminas/farmacologia , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Eritrócitos/parasitologia , Humanos , Metionina tRNA Ligase/genética , Modelos Moleculares , Plasmodium falciparum/genética , Inibidores da Síntese de Proteínas/síntese química , Tiofenos/farmacologia
7.
J Struct Funct Genomics ; 15(2): 63-71, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24935905

RESUMO

Malaria parasites inevitably develop drug resistance to anti-malarials over time. Hence the immediacy for discovering new chemical scaffolds to include in combination malaria drug therapy. The desirable attributes of new chemotherapeutic agents currently include activity against both liver and blood stage malaria parasites. One such recently discovered compound called cladosporin abrogates parasite growth via inhibition of Plasmodium falciparum lysyl-tRNA synthetase (PfKRS), an enzyme central to protein translation. Here, we present crystal structure of ternary PfKRS-lysine-cladosporin (PfKRS-K-C) complex that reveals cladosporin's remarkable ability to mimic the natural substrate adenosine and thereby colonize PfKRS active site. The isocoumarin fragment of cladosporin sandwiches between critical adenine-recognizing residues while its pyran ring fits snugly in the ribose-recognizing cavity. PfKRS-K-C structure highlights ample space within PfKRS active site for further chemical derivatization of cladosporin. Such derivatives may be useful against additional human pathogens that retain high conservation in cladosporin chelating residues within their lysyl-tRNA synthetase.


Assuntos
Antimaláricos/farmacologia , Isocumarinas/farmacologia , Lisina-tRNA Ligase/química , Plasmodium falciparum/enzimologia , Animais , Antimaláricos/química , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Isocumarinas/química , Lisina-tRNA Ligase/metabolismo , Conformação Proteica/efeitos dos fármacos
8.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 1): 91-100, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24419382

RESUMO

Glutaredoxins (Grxs) are redox proteins that use glutathione ((γ)Glu-Cys-Gly; GSH) as a cofactor. Plasmodium falciparum has one classic dithiol (CXXC) glutaredoxin (glutaredoxin 1; PfGrx1) and three monothiol (CXXS) Grx-like proteins (GLPs), which have five residue insertions prior to the active-site Cys. Here, the crystal structure of PfGrx1 has been determined by the sulfur single-wavelength anomalous diffraction (S-SAD) method utilizing intrinsic protein and solvent S atoms. Several residues were modelled with alternate conformations, and an alternate position was refined for the active-site Cys29 owing to radiation damage. The GSH-binding site is occupied by water polygons and buffer molecules. Structural comparison of PfGrx1 with other Grxs and Grx-like proteins revealed that the GSH-binding motifs (CXXC/CXXS, TVP, CDD, Lys26 and Gln/Arg63) are structurally conserved. Both the monothiol and dithiol Grxs possess three conserved water molecules; two of these were located in the GSH-binding site. PfGrx1 has several polar and charged amino-acid substitutions that provide structurally important additional hydrogen bonds and salt bridges missing in other Grxs.


Assuntos
Glutarredoxinas/química , Plasmodium falciparum/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Glutarredoxinas/metabolismo , Glutationa/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Plasmodium falciparum/química , Plasmodium falciparum/metabolismo , Ligação Proteica , Conformação Proteica , Alinhamento de Sequência , Compostos de Sulfidrila/química
9.
J Exp Med ; 210(10): 2071-86, 2013 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-24043761

RESUMO

Toxoplasma gondii, the causative agent of toxoplasmosis, is an obligate intracellular protozoan parasite that resides inside a parasitophorous vacuole. During infection, Toxoplasma actively remodels the transcriptome of its hosting cells with profound and coupled impact on the host immune response. We report that Toxoplasma secretes GRA24, a novel dense granule protein which traffics from the vacuole to the host cell nucleus. Once released into the host cell, GRA24 has the unique ability to trigger prolonged autophosphorylation and nuclear translocation of the host cell p38α MAP kinase. This noncanonical kinetics of p38α activation correlates with the up-regulation of the transcription factors Egr-1 and c-Fos and the correlated synthesis of key proinflammatory cytokines, including interleukin-12 and the chemokine MCP-1, both known to control early parasite replication in vivo. Remarkably, the GRA24-p38α complex is defined by peculiar structural features and uncovers a new regulatory signaling path distinct from the MAPK signaling cascade and otherwise commonly activated by stress-related stimuli or various intracellular microbes.


Assuntos
Proteínas de Protozoários/imunologia , Toxoplasma/imunologia , Toxoplasmose/imunologia , Toxoplasmose/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Quimiocinas/biossíntese , Análise por Conglomerados , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Ativação Enzimática , Feminino , Deleção de Genes , Perfilação da Expressão Gênica , Ordem dos Genes , Humanos , Inflamação/genética , Inflamação/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Fosforilação , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Transporte Proteico , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Alinhamento de Sequência , Toxoplasma/genética , Proteínas Quinases p38 Ativadas por Mitógeno/química
10.
J Biol Chem ; 288(3): 1590-602, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23204525

RESUMO

Calcium-dependent protein kinases (CDPKs) play important roles in the life cycle of Plasmodium falciparum and other apicomplexan parasites. CDPKs commonly have an N-terminal kinase domain (KD) and a C-terminal calmodulin-like domain (CamLD) with calcium-binding EF hands. The KD and CamLD are separated by a junction domain (JD). Previous studies on Plasmodium and Toxoplasma CDPKs suggest a role for the JD and CamLD in the regulation of kinase activity. Here, we provide direct evidence for the binding of the CamLD with the P3 region (Leu(356) to Thr(370)) of the JD in the presence of calcium (Ca(2+)). Moreover, site-directed mutagenesis of conserved hydrophobic residues in the JD (F363A/I364A, L356A, and F350A) abrogates functional activity of PfCDPK1, demonstrating the importance of these residues in PfCDPK1 function. Modeling studies suggest that these residues play a role in interaction of the CamLD with the JD. The P3 peptide, which specifically inhibits the functional activity of PfCDPK1, blocks microneme discharge and erythrocyte invasion by P. falciparum merozoites. Purfalcamine, a previously identified specific inhibitor of PfCDPK1, also inhibits microneme discharge and erythrocyte invasion, confirming a role for PfCDPK1 in this process. These studies validate PfCDPK1 as a target for drug development and demonstrate that interfering with its mechanistic regulation may provide a novel approach to design-specific PfCDPK1 inhibitors that limit blood stage parasite growth and clear malaria parasite infections.


Assuntos
Merozoítos/enzimologia , Organelas/enzimologia , Plasmodium falciparum/enzimologia , Proteínas Quinases/metabolismo , Proteínas de Protozoários/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Sequência de Aminoácidos , Transporte Biológico/efeitos dos fármacos , Cálcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Cicloexilaminas/farmacologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Escherichia coli/genética , Expressão Gênica , Humanos , Merozoítos/efeitos dos fármacos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Organelas/efeitos dos fármacos , Organelas/metabolismo , Peptídeos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/química , Proteínas Quinases/genética , Estrutura Terciária de Proteína , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
11.
Nat Commun ; 2: 530, 2011 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-22068597

RESUMO

Malaria infection triggers pro-inflammatory responses in humans that are detrimental to host health. Parasite-induced enhancement in cytokine levels correlate with malaria-associated pathologies. Here we show that parasite tyrosyl-tRNA synthetase (PfTyrRS), a housekeeping protein translation enzyme, induces pro-inflammatory responses from host immune cells. PfTyrRS exits from the parasite cytoplasm into the infected red blood cell (iRBC) cytoplasm, from where it is released into the extracellular medium on iRBC lysis. Using its ELR peptide motif, PfTyrRS specifically binds to and internalizes into host macrophages, leading to enhanced secretion of the pro-inflammatory cytokines TNF-α and IL-6. PfTyrRS-macrophage interaction also augments expression of adherence-linked host endothelial receptors ICAM-1 and VCAM-1. Our description of PfTyrRS as a parasite-secreted protein that triggers pro-inflammatory host responses, along with its atomic resolution crystal structure in complex with tyrosyl-adenylate, provides a novel platform for targeting PfTyrRS in anti-parasitic strategies.


Assuntos
Malária/imunologia , Malária/parasitologia , Tirosina-tRNA Ligase/imunologia , Tirosina-tRNA Ligase/metabolismo , Animais , Western Blotting , Linhagem Celular , Células Cultivadas , Citocinas/metabolismo , Eritrócitos/imunologia , Eritrócitos/parasitologia , Humanos , Interleucina-6/metabolismo , Macrófagos/metabolismo , Malária/metabolismo , Camundongos , Fator de Necrose Tumoral alfa/metabolismo
12.
Acta Crystallogr D Biol Crystallogr ; 66(Pt 12): 1323-33, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21123873

RESUMO

The structure of the 24 kDa cysteine protease saru-actinidin from the fruit of Actinidia arguta Planch. (sarunashi) was determined by the cadmium/sulfur-SAD method with X-ray diffraction data collected using in-house Cu Kα and Cr Kα radiation. The anomalous scatterers included nine sulfurs and several cadmium ions from the crystallization solution. The high quality of the diffraction data, the use of chromium-anode X-ray radiation and the substantial anomalous signal allowed structure determination and automated model building despite both a low solvent content (<40%) and low data multiplicity. The amino-acid sequence of saru-actinidin was deduced from the cDNA and was modified based on experimental electron-density maps at 1.5 Šresolution. The active site of saru-actinidin is occupied by a cadmium ion and the active-site cysteine is found to be in an unmodified, cysteine sulfenic acid or cysteine sulfinic acid form. The cadmium sites, coordination geometries and polygonal water structures on the protein surface have also been extensively analyzed. An analysis and comparison of the sulfur/cadmium anomalous signals at the Cu Kα and Cr Kα wavelengths was carried out. It is proposed that the inclusion of cadmium salts in crystallization solutions coupled with chromium-anode radiation can provide a convenient route for structure determination.


Assuntos
Actinidia/química , Cromo/química , Cobre/química , Cisteína Endopeptidases/química , Enxofre/química , Sequência de Aminoácidos , Sequência Conservada , Cristalografia por Raios X , Cisteína Endopeptidases/análise , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência
13.
J Biol Chem ; 285(8): 5917-30, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20007323

RESUMO

D-tyrosyl-tRNA(Tyr) deacylase (DTD) is an editing enzyme that removes D-amino acids from mischarged tRNAs. We describe an in-depth analysis of the malaria parasite Plasmodium falciparum DTD here. Our data provide structural insights into DTD complexes with adenosine and D-amino acids. Bound adenosine is proximal to the DTD catalysis site, and it represents the authentic terminal adenosine of charged tRNA. DTD-bound D-amino acids cluster at three different subsites within the overall active site pocket. These subsites, called transition, active, and exit subsites allow docking, re-orientation, chiral selection, catalysis, and exit of the free D-amino acid from DTD. Our studies reveal variable modes of D-amino acid recognition by DTDs, suggesting an inherent plasticity that can accommodate all D-amino acids. An in-depth analysis of native, ADP-bound, and D-amino acid-complexed DTD structures provide the first atomic snapshots of ligand recognition and subsequent catalysis by this enzyme family. We have mapped sites for the deacylation reaction and mark possible routes for entry and egress of all substrates and products. We have also performed structure-based inhibitor discovery and tested lead compounds against the malaria parasite P. falciparum using growth inhibition assays. Our studies provide a comprehensive structural basis for the catalytic mechanism of DTD enzymes and have implications for inhibition of this enzyme in P. falciparum as a route to inhibiting the parasite.


Assuntos
Hidrolases/química , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/química , Adenosina , Catálise , Domínio Catalítico , Hidrolases/metabolismo , Proteínas de Protozoários/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA