Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Infect Dis ; 8(7): 1265-1279, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35766385

RESUMO

There is a pressing need for host-directed therapeutics that elicit broad-spectrum antiviral activities to potentially address current and future viral pandemics. Apratoxin S4 (Apra S4) is a potent Sec61 inhibitor that prevents cotranslational translocation of secretory proteins into the endoplasmic reticulum (ER), leading to anticancer and antiangiogenic activity both in vitro and in vivo. Since Sec61 has been shown to be an essential host factor for viral proteostasis, we tested Apra S4 in cellular models of viral infection, including SARS-CoV-2, influenza A virus, and flaviviruses (Zika, West Nile, and Dengue virus). Apra S4 inhibited viral replication in a concentration-dependent manner and had high potency particularly against SARS-CoV-2 and influenza A virus, with subnanomolar activity in human cells. Characterization studies focused on SARS-CoV-2 revealed that Apra S4 impacted a post-entry stage of the viral life-cycle. Transmission electron microscopy revealed that Apra S4 blocked formation of stacked double-membrane vesicles, the sites of viral replication. Apra S4 reduced dsRNA formation and prevented viral protein production and trafficking of secretory proteins, especially the spike protein. Given the potent and broad-spectrum activity of Apra S4, further preclinical evaluation of Apra S4 and other Sec61 inhibitors as antivirals is warranted.


Assuntos
Tratamento Farmacológico da COVID-19 , Vírus da Influenza A , Infecção por Zika virus , Zika virus , Antivirais/farmacologia , Antivirais/uso terapêutico , Depsipeptídeos , Humanos , Pandemias , SARS-CoV-2 , Infecção por Zika virus/tratamento farmacológico
2.
Cell Rep ; 34(2): 108628, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33440148

RESUMO

Recent studies have profiled the innate immune signatures in patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and suggest that cellular responses to viral challenge may affect disease severity. Yet the molecular events that underlie cellular recognition and response to SARS-CoV-2 infection remain to be elucidated. Here, we find that SARS-CoV-2 replication induces a delayed interferon (IFN) response in lung epithelial cells. By screening 16 putative sensors involved in sensing of RNA virus infection, we found that MDA5 and LGP2 primarily regulate IFN induction in response to SARS-CoV-2 infection. Further analyses revealed that viral intermediates specifically activate the IFN response through MDA5-mediated sensing. Additionally, we find that IRF3, IRF5, and NF-κB/p65 are the key transcription factors regulating the IFN response during SARS-CoV-2 infection. In summary, these findings provide critical insights into the molecular basis of the innate immune recognition and signaling response to SARS-CoV-2.


Assuntos
Imunidade Inata , Helicase IFIH1 Induzida por Interferon/metabolismo , SARS-CoV-2/fisiologia , COVID-19/patologia , COVID-19/virologia , Linhagem Celular , Células Epiteliais/citologia , Células Epiteliais/imunologia , Células Epiteliais/virologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Interferons/genética , Interferons/metabolismo , RNA Helicases/metabolismo , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , RNA Interferente Pequeno/metabolismo , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Transdução de Sinais , Fator de Transcrição RelA/metabolismo , Replicação Viral
3.
Nat Microbiol ; 2: 17022, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28248290

RESUMO

Retinoic acid-inducible gene I (RIG-I) receptor recognizes 5'-triphosphorylated RNA and triggers a signalling cascade that results in the induction of type-I interferon (IFN)-dependent responses. Its precise regulation represents a pivotal balance between antiviral defences and autoimmunity. To elucidate the cellular cofactors that regulate RIG-I signalling, we performed two global RNA interference analyses to identify both positive and negative regulatory nodes operating on the signalling pathway during virus infection. These factors were integrated with experimentally and computationally derived interactome data to build a RIG-I protein interaction network. Our analysis revealed diverse cellular processes, including the unfolded protein response, Wnt signalling and RNA metabolism, as critical cellular components governing innate responses to non-self RNA species. Importantly, we identified K-Homology Splicing Regulatory Protein (KHSRP) as a negative regulator of this pathway. We find that KHSRP associates with the regulatory domain of RIG-I to maintain the receptor in an inactive state and attenuate its sensing of viral RNA (vRNA). Consistent with increased RIG-I antiviral signalling in the absence of KHSRP, viral replication is reduced when KHSRP expression is knocked down both in vitro and in vivo. Taken together, these data indicate that KHSRP functions as a checkpoint regulator of the innate immune response to pathogen challenge.


Assuntos
Proteína DEAD-box 58/antagonistas & inibidores , RNA Viral/imunologia , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Transativadores/metabolismo , Células HEK293 , Humanos , Imunidade Inata , Vírus da Influenza A Subtipo H1N1/imunologia , Ligação Proteica , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Receptores Imunológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA