Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antiviral Res ; 194: 105165, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34419484

RESUMO

The development of novel antivirals to treat hepatitis B virus (HBV) infection is still needed because currently available drugs do not completely eradicate chronic HBV in some patients. Recently, troglitazone and ciglitazone, classified among the compounds including the thiazolidinedione (TZD) moiety, were found to inhibit HBV infection, but these compounds are not clinically available. In this study, we synthesized 11 TZD derivatives, compounds 1-11, and examined the effect of each compound on HBV infection in HepG2 cells expressing NTCP (HepG2/NTCP cells). Among the derivatives, (Z)-5-((4'-(naphthalen-1-yl)-[1,1'-biphenyl]-4-yl)methylene)thiazolidine-2,4-dione (compound 6) showed the highest antiviral activity, with an IC50 value of 0.3 µM and a selectivity index (SI) of 85, but compound 6 did not affect HCV infection. Treatment with compound 6 inhibited HBV infection in primary human hepatocytes (PHHs) but did not inhibit viral replication in HepG2.2.15 cells or HBV DNA-transfected Huh7 cells. Moreover, treatment with compound 6 significantly impaired hepatitis delta virus (HDV) infection and inhibited a step in HBV particle internalization but did not inhibit attachment of the preS1 lipopeptide or viral particles to the cell surface. These findings suggest that compound 6 interferes with HBV infection via inhibition of the internalization process.


Assuntos
Antivirais/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Antivirais/síntese química , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/virologia , Humanos , Concentração Inibidora 50 , Tiazolidinedionas/síntese química
2.
Chem Asian J ; 15(24): 4271-4274, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33029940

RESUMO

Here we describe the diastereoselective synthesis of (5r,8r)-1,9-diazadispiro[4.2.48 .25 ]tetradecatrienes via domino double spirocyclization of N-arylamide derivatives. This reaction can serve as a fast way to synthesize diazadispirocycles, which are found in the core structures of bioactive natural products. Product diversification via Suzuki-Miyaura cross coupling and application to the synthesis of 1-oxa-9-azadispiro[4.2.48 .25 ]tetradecatrienes were also conducted.

3.
Biol Pharm Bull ; 42(7): 1134-1139, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30982786

RESUMO

Cancer is the leading cause of death and there is a particularly pressing need to develop effective treatments for breast and prostate cancer. In the current study, we show the inhibitory effects of cinnamic acid derivatives, including caffeic acid phenethyl ester (CAPE, 1), on the growth of breast and prostate cancer cells. Among the compounds examined, 3,4,5-trihydroxycinnamic acid decyl ester (6) showed the most potent inhibition of cancer cell growth by the induction of apoptosis. Compound 6 could be a new anti-cancer agent for use against breast and prostate cancer.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Cinamatos/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Humanos , Células MCF-7 , Masculino , Células PC-3
4.
Antiviral Res ; 145: 123-130, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28780423

RESUMO

Several cinnamic acid derivatives have been reported to exhibit antiviral activity. In this study, we prepared 17 synthetic cinnamic acid derivatives and screened them to identify an effective antiviral compound against hepatitis C virus (HCV). Compound 6, one of two hit compounds, suppressed the viral replications of genotypes 1b, 2a, 3a, and 4a with EC50 values of 1.5-8.1 µM and SI values of 16.2-94.2. The effect of compound 6 on the phosphorylation of Tyr705 in signal transducer and activator of transcription 3 (STAT3) was investigated because a cinnamic acid derivative AG490 was reported to suppress HCV replication and the activity of Janus kinase (JAK) 2. Compound 6 potently suppressed HCV replication, but it did not inhibit the JAK1/2-dependent phosphorylation of STAT3 Tyr705 at the same concentration. Furthermore, a pan-JAK inhibitor tofacitinib potently impaired phosphorylation of STAT3 Tyr 705, but it did not inhibit HCV replication in the replicon cells and HCV-infected cells at the same concentration, supporting the notion that the phosphorylated state of STAT3 Tyr705 is not necessarily correlated with HCV replication. The production of reactive oxygen species (ROS) was induced by treatment with compound 6, whereas N-acetyl-cysteine restored HCV replication and impaired ROS production in the replicon cells treated with compound 6. These data suggest that compound 6 inhibits HCV replication via the induction of oxidative stress.


Assuntos
Antivirais/farmacologia , Cinamatos/farmacologia , Hepacivirus/efeitos dos fármacos , Estresse Oxidativo , Replicação Viral/efeitos dos fármacos , Antivirais/síntese química , Linhagem Celular , Cinamatos/síntese química , Cinamatos/química , Replicação do DNA/efeitos dos fármacos , Hepacivirus/fisiologia , Hepatite C/virologia , Ensaios de Triagem em Larga Escala , Humanos , RNA Viral , Espécies Reativas de Oxigênio/metabolismo , Replicon/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo
5.
Sci Rep ; 5: 16699, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26567527

RESUMO

The chaperone system is known to be exploited by viruses for their replication. In the present study, we identified the cochaperone FKBP6 as a host factor required for hepatitis C virus (HCV) replication. FKBP6 is a peptidyl prolyl cis-trans isomerase with three domains of the tetratricopeptide repeat (TPR), but lacks FK-506 binding ability. FKBP6 interacted with HCV nonstructural protein 5A (NS5A) and also formed a complex with FKBP6 itself or FKBP8, which is known to be critical for HCV replication. The Val(121) of NS5A and TPR domains of FKBP6 were responsible for the interaction between NS5A and FKBP6. FKBP6 was colocalized with NS5A, FKBP8, and double-stranded RNA in HCV-infected cells. HCV replication was completely suppressed in FKBP6-knockout hepatoma cell lines, while the expression of FKBP6 restored HCV replication in FKBP6-knockout cells. A treatment with the FKBP8 inhibitor N-(N', N'-dimethylcarboxamidomethyl)cycloheximide impaired the formation of a homo- or hetero-complex consisting of FKBP6 and/or FKBP8, and suppressed HCV replication. HCV infection promoted the expression of FKBP6, but not that of FKBP8, in cultured cells and human liver tissue. These results indicate that FKBP6 is an HCV-induced host factor that supports viral replication in cooperation with NS5A.


Assuntos
Hepacivirus/fisiologia , Proteínas de Ligação a Tacrolimo/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cicloeximida/análogos & derivados , Cicloeximida/farmacologia , Células HEK293 , Humanos , Microscopia de Fluorescência , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica/efeitos dos fármacos , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a Tacrolimo/antagonistas & inibidores , Proteínas de Ligação a Tacrolimo/genética , Proteínas não Estruturais Virais/química
6.
Bioorg Med Chem ; 23(13): 3788-95, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25910587

RESUMO

Obesity is a risk factor associated with several lifestyle-related diseases, for example, diabetes, high blood pressure, hyperlipidemia and cancer. Caffeic acid 2-phenylethyl ester (CAPE, 1), a naturally-occurring compound found in various plants and propolis, which exhibits anti-inflammatory, immunomodulatory and cytotoxic activities and inhibits 3T3-L1 differentiation to adipocytes. As part of our efforts to moderate lifestyle-related diseases, we synthesized analogs of 1 and studied their effects on pancreatic lipase activities, lipid absorption, and 3T3-L1 differentiation. We found that catechols 1-4 show inhibitory activities against pancreatic lipase in a dose-dependent manner in vitro. Compounds 1-3 proved to be more potent inhibitors of pancreatic lipase than 5, 6, 8, and 9, which have one hydroxyl group, respectively. Compound 7 has three aromatic hydroxyl groups and restrains greater lipase inhibitory activity than the other compounds. In addition, 7 and 3 significantly suppress a rise in blood triglyceride (TG) levels in mice given corn oil orally. Furthermore, 2 and 3 are more potent at preventing 3T3-L1 differentiation (lipid accumulation) than 1, while 7 is more potent than 3, 8, and 9 in these assays. Compounds 2, 3, and 7 inhibit lipid absorption and accumulation, with new compound 7 being the most potent. These results indicate that 7 may have potential benefits as a health agent with anti-obesity properties.


Assuntos
Fármacos Antiobesidade/farmacologia , Ácidos Cafeicos/farmacologia , Catecóis/farmacologia , Absorção Intestinal/efeitos dos fármacos , Obesidade/tratamento farmacológico , Álcool Feniletílico/análogos & derivados , Células 3T3-L1 , Animais , Fármacos Antiobesidade/síntese química , Ácidos Cafeicos/síntese química , Catecóis/síntese química , Diferenciação Celular/efeitos dos fármacos , Óleo de Milho/administração & dosagem , Relação Dose-Resposta a Droga , Lipase/antagonistas & inibidores , Lipase/metabolismo , Camundongos , Obesidade/metabolismo , Obesidade/patologia , Pâncreas/efeitos dos fármacos , Pâncreas/enzimologia , Álcool Feniletílico/síntese química , Álcool Feniletílico/farmacologia , Relação Estrutura-Atividade , Suínos , Triglicerídeos/antagonistas & inibidores , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA