Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Analyst ; 149(13): 3596-3606, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38767610

RESUMO

Real-time and non-invasive assessment of tissue health is crucial for maximizing the potential of microphysiological systems (MPS) for drug-induced nephrotoxicity screening. Although impedance has been widely considered as a measure of the barrier function, it has not been incorporated to detect cell detachment in MPS with top and bottom microfluidic channels separated by a porous membrane. During cell delamination from the porous membrane, the resistance between both channels decreases, while capacitance increases, allowing the detection of such detachment. Previously reported concepts have solely attributed the decrease in the resistance to the distortion of the barrier function, ignoring the resistance and capacitance changes due to cell detachment. Here, we report a two-channel MPS with integrated indium tin oxide (ITO) electrodes capable of measuring impedance in real time. The trans-epithelial electrical resistance (TEER) and tissue reactance (capacitance) were extracted from the impedance profiles. We attributed the anomalous initial increase observed in TEER, upon cisplatin administration, to the distortion of tight junctions. Cell detachment was captured by sudden jumps in capacitance. TEER profiles illuminated the effects of cisplatin and cimetidine treatments in a dose-dependent and polarity-dependent manner. The correspondence between TEER and barrier function was validated for a continuous tissue using the capacitance profiles. These results demonstrate that capacitance can be used as a real-time and non-invasive indicator of confluence and will support the accuracy of the drug-induced cytotoxicity assessed by TEER profiles in the two-channel MPS for the barrier function of a cell monolayer.


Assuntos
Cisplatino , Impedância Elétrica , Túbulos Renais Proximais , Cisplatino/toxicidade , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/patologia , Animais , Compostos de Estanho/química , Compostos de Estanho/toxicidade , Cinética , Cimetidina/farmacologia , Adesão Celular/efeitos dos fármacos , Eletrodos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Linhagem Celular , Humanos , Junções Íntimas/efeitos dos fármacos
2.
Proc Natl Acad Sci U S A ; 121(13): e2312472121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38502703

RESUMO

Alveolar soft-part sarcoma (ASPS) is a slow-growing soft tissue sarcoma with high mortality rates that affects adolescents and young adults. ASPS resists conventional chemotherapy; thus, decades of research have elucidated pathogenic mechanisms driving the disease, particularly its angiogenic capacities. Integrated blood vessels that are rich in pericytes (PCs) and metastatic potential are distinctive of ASPS. To mimic ASPS angiogenic microenvironment, a microfluidic coculture vasculature chip has been developed as a three-dimensional (3D) spheroid composed of mouse ASPS, a layer of PCs, and endothelial cells (ECs). This ASPS-on-a-chip provided functional and morphological similarity as the in vivo mouse model to elucidate the cellular crosstalk within the tumor vasculature before metastasis. We successfully reproduce ASPS spheroid and leaky vessels representing the unique tumor vasculature to assess effective drug delivery into the core of a solid tumor. Furthermore, this ASPS angiogenesis model enabled us to investigate the role of proteins in the intracellular trafficking of bioactive signals from ASPS to PCs and ECs during angiogenesis, including Rab27a and Sytl2. The results can help to develop drugs targeting the crosstalk between ASPS and the adjacent cells in the tumoral microenvironment.


Assuntos
Sarcoma Alveolar de Partes Moles , Animais , Camundongos , Sarcoma Alveolar de Partes Moles/tratamento farmacológico , Sarcoma Alveolar de Partes Moles/metabolismo , Sarcoma Alveolar de Partes Moles/patologia , Células Endoteliais/metabolismo , Técnicas de Cocultura , Microfluídica , Microambiente Tumoral
3.
Lab Chip ; 24(4): 680-696, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38284292

RESUMO

The lack of functional vascular system in stem cell-derived cerebral organoids (COs) limits their utility in modeling developmental processes and disease pathologies. Unlike other organs, brain vascularization is poorly understood, which makes it particularly difficult to mimic in vitro. Although several attempts have been made to vascularize COs, complete vascularization leading to functional capillary network development has only been achieved via transplantation into a mouse brain. Understanding the cues governing neurovascular communication is therefore imperative for establishing an efficient in vitro system for vascularized cerebral organoids that can emulate human brain development. Here, we used a multidisciplinary approach combining microfluidics, organoids, and transcriptomics to identify molecular changes in angiogenic programs that impede the successful in vitro vascularization of human induced pluripotent stem cell (iPSC)-derived COs. First, we established a microfluidic cerebral organoid (CO)-vascular bed (VB) co-culture system and conducted transcriptome analysis on the outermost cell layer of COs cultured on the preformed VB. Results revealed coordinated regulation of multiple pro-angiogenic factors and their downstream targets. The VEGF-HIF1A-AKT network was identified as a central pathway involved in the angiogenic response of cerebral organoids to the preformed VB. Among the 324 regulated genes associated with angiogenesis, six transcripts represented significantly regulated growth factors with the capacity to influence angiogenic activity during co-culture. Subsequent on-chip experiments demonstrated the angiogenic and vasculogenic potential of cysteine-rich angiogenic inducer 61 (CYR61) and hepatoma-derived growth factor (HDGF) as potential enhancers of organoid vascularization. Our study provides the first global analysis of cerebral organoid response to three-dimensional microvasculature for in vitro vascularization.


Assuntos
Células-Tronco Pluripotentes Induzidas , Camundongos , Animais , Humanos , Técnicas de Cocultura , Organoides , Neovascularização Patológica/metabolismo , Encéfalo
4.
Nat Commun ; 14(1): 1957, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029109

RESUMO

Alveolar soft part sarcoma (ASPS) is a soft part malignancy affecting adolescents and young adults. ASPS is characterized by a highly integrated vascular network, and its high metastatic potential indicates the importance of ASPS's prominent angiogenic activity. Here, we find that the expression of ASPSCR1::TFE3, the fusion transcription factor causatively associated with ASPS, is dispensable for in vitro tumor maintenance; however, it is required for in vivo tumor development via angiogenesis. ASPSCR1::TFE3 is frequently associated with super-enhancers (SEs) upon its DNA binding, and the loss of its expression induces SE-distribution dynamic modification related to genes belonging to the angiogenesis pathway. Using epigenomic CRISPR/dCas9 screening, we identify Pdgfb, Rab27a, Sytl2, and Vwf as critical targets associated with reduced enhancer activities due to the ASPSCR1::TFE3 loss. Upregulation of Rab27a and Sytl2 promotes angiogenic factor-trafficking to facilitate ASPS vascular network construction. ASPSCR1::TFE3 thus orchestrates higher ordered angiogenesis via modulating the SE activity.


Assuntos
Proteínas de Fusão Oncogênica , Sarcoma Alveolar de Partes Moles , Adolescente , Adulto Jovem , Humanos , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Sarcoma Alveolar de Partes Moles/genética , Sarcoma Alveolar de Partes Moles/diagnóstico , Sarcoma Alveolar de Partes Moles/patologia , Genes Reguladores , Fatores de Transcrição/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética
5.
Biosens Bioelectron ; 219: 114808, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36327566

RESUMO

Microphysiological systems (MPSs) with three-dimensional (3D) cultured models have attracted considerable interest because of their potential to mimic human health and disease conditions. Recent MPSs have shown significant advancements in engineering perfusable vascular networks integrated with 3D culture models, realizing a more physiological environment in vitro; however, a sensing system that can monitor their activity under biomimetic vascular flow is lacking. We designed an open-top microfluidic device with sensor capabilities and demonstrated its application in analyzing oxygen metabolism in vascularized 3D tissue models. We first validated the platform by using human lung fibroblast (hLF) spheroids. Then, we applied the platform to a patient-derived cancer organoid and evaluated the changes in oxygen metabolism during drug administration through the vascular network. We found that the platform could integrate a perfusable vascular network with 3D cultured cells, and the electrochemical sensor could detect the change in oxygen metabolism in a quantitative, non-invasive, and real-time manner. This platform would become a monitoring system for 3D cultured cells integrated with a perfusable vascular network.

6.
APL Bioeng ; 6(4): 046105, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36397962

RESUMO

Development of the robust and functionally stable three-dimensional (3D) microvasculature remains challenging. One often-overlooked factor is the presence of potential anti-angiogenic agents in culture media. Sodium selenite, an antioxidant commonly used in serum-free media, demonstrates strong anti-angiogenic properties and has been proposed as an anticancer drug. However, its long-term effects on in vitro microvascular systems at the concentrations used in culture media have not been studied. In this study, we used a five-channel microfluidic device to investigate the concentration and temporal effects of sodium selenite on the morphology and functionality of on-chip preformed microvasculature. We found that high concentrations (∼3.0 µM) had adverse effects on microvasculature perfusion, permeability, and overall integrity within the first few days. Moreover, even at low concentrations (∼3.0 nM), a long-term culture effect was observed, resulting in an increase in vascular permeability without any noticeable changes in morphology. A further analysis suggested that vessel leakage may be due to vascular endothelial growth factor dysregulation, disruption of intracellular junctions, or both. This study provides important insight into the adverse effects caused by the routinely present sodium selenite on 3D microvasculature in long-term studies for its application in disease modeling and drug screening.

7.
Drug Metab Pharmacokinet ; 47: 100469, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36174354

RESUMO

We constructed tumor spheroids with a perfusable vascular network to assess drug delivery systems that target the tumor vasculature. A tricultured tumor spheroid containing human umbilical vein endothelial cells (HUVECs) was placed in the central compartment of a microfluidic device, and the HUVECs were seeded into the microslit channels on both sides. Angiogenic sprouts began to form within a few days, from both the tumor spheroids and microchannels, and became more abundant and branched, while attracting each other, over time. A continuous vascular network of HUVECs was fully formed on Day 7. The uptake of 3'-(1-carboxy)ethyl sialyl Lewis X mimic (3'-CE sLeX mimic) liposomes, which have previously been proven to recognize E-selectin, in vascular-perfusable tumor spheroids was assessed. 3'-CE sLeX mimic and pegylated liposomes were rarely taken up, but when the vascular network was pretreated with TNF-α and IL-1ß, 3'-CE sLeX mimic liposomes accumulated considerably more in endothelial cells and their vicinity. Taken together, along with the known in vivo expression of E-selectin in tumor angiogenic blood vessels, these results suggest that 3'-CE sLeX mimic liposomes are a promising carrier for targeting tumor vasculature. Furthermore, proinflammatory cytokine treatment may be appropriate for use with vascular-perfusable tumor spheroids in pharmacokinetic studies.


Assuntos
Selectina E , Neoplasias , Humanos , Selectina E/metabolismo , Lipossomos , Células Endoteliais/metabolismo , Oligossacarídeos/metabolismo
8.
Methods Mol Biol ; 2430: 121-131, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35476329

RESUMO

Single-molecule fluorescence microscopy is a key tool to investigate the chemo-mechanical coupling of microtubule-associated motor proteins, such as kinesin. However, a major limitation of the implementation of single-molecule observation is the concentration of fluorescently labeled molecules. For example, in total internal reflection fluorescence microscopy, the available concentration is of the order of 10 nM. This concentration is much lower than the concentration of adenosine triphosphate (ATP) in vivo, hindering the single-molecule observation of fluorescently labeled ATP hydrolyzed by motor proteins under the physiologically relevant conditions. Here, we provide a method for the use of single-molecule fluorescence microscopy in the presence of ~500 nM of fluorescently labeled ATP. To achieve this, a device equipped with nano-slits is used to confine excitation light into its slits as an expansion of zero-mode waveguides (ZMWs). Conventional ZMWs equip apertures with a diameter smaller than the wavelength of light to suppress background noise from the labeled molecules diffusing outside of the apertures. While they are not compatible with filamentous objects, our linear-ZMWs enable the usage of filamentous objects, such as microtubules. An experiment using linear-ZMWs demonstrated the successful exploration of the interaction between kinesin and ATP using single-molecule fluorescence microscopy.


Assuntos
Cinesinas , Nucleotídeos , Trifosfato de Adenosina/metabolismo , Microtúbulos/metabolismo , Nanotecnologia , Nucleotídeos/metabolismo
9.
Mol Biol Rep ; 48(1): 395-403, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33387197

RESUMO

High vascularization is a biological characteristic of glioblastoma (GBM); however, an in-vitro experimental model to verify the mechanism and physiological role of vasculogenesis in GBM is not well-established. Recently, we established a self-organizing vasculogenic model using human umbilical vein endothelial cells (HUVECs) co-cultivated with human lung fibroblasts (hLFs). Here, we exploited this system to establish a realistic model of vasculogenesis in GBM. We developed two polydimethylsiloxane (PDMS) devices, a doughnut-hole dish and a 5-lane microfluidic device to observe the contact-independent effects of glioblastoma cells on HUVECs. We tested five patient-derived and five widely used GBM cell lines. Confocal fluorescence microscopy was used to observe the morphological changes in Red Fluorescent Protein (RFP)-HUVECs and fluorescein isothiocyanate (FITC)-dextran perfusion. The genetic and expression properties of GBM cell lines were analyzed. The doughnut-hole dish assay revealed KNS1451 as the only cells to induce HUVEC transformation to vessel-like structures, similar to hLFs. The 5-lane device assay demonstrated that KNS1451 promoted the formation of a vascular network that was fully perfused, revealing the functioning luminal construction. Microarray analysis revealed that KNS1451 is a mesenchymal subtype of GBM. Using a patient-derived mesenchymal GBM cell line, mature de-novo vessel formation could be induced in HUVECs by contact-independent co-culture with GBM in a microfluidic device. These results support the development of a novel in vitro research model and provide novel insights in the neovasculogenic mechanism of GBM and may potentially facilitate the future detection of unknown molecular targets.


Assuntos
Neoplasias Encefálicas/genética , Diferenciação Celular/genética , Glioblastoma/genética , Neovascularização Patológica/genética , Vasos Sanguíneos/crescimento & desenvolvimento , Vasos Sanguíneos/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Técnicas de Cocultura , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Dispositivos Lab-On-A-Chip , Proteínas Luminescentes/metabolismo , Células-Tronco Mesenquimais/metabolismo , Mesoderma/crescimento & desenvolvimento , Mesoderma/patologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Proteína Vermelha Fluorescente
10.
PLoS One ; 15(10): e0240552, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33112918

RESUMO

A lack of perfusion has been one of the most significant obstacles for three-dimensional culture systems of organoids and embryonic tissues. Here, we developed a simple and reliable method to implement a perfusable capillary network in vitro. The method employed the self-organization of endothelial cells to generate a capillary network and a static pressure difference for culture medium circulation, which can be easily introduced to standard biological laboratories and enables long-term cultivation of vascular structures. Using this culture system, we perfused the lumen of the self-organized capillary network and observed a flow-induced vascular remodeling process, cell shape changes, and collective cell migration. We also observed an increase in cell proliferation around the self-organized vasculature induced by flow, indicating functional perfusion of the culture medium. We also reconstructed extravasation of tumor and inflammatory cells, and circulation inside spheroids including endothelial cells and human lung fibroblasts. In conclusion, this system is a promising tool to elucidate the mechanisms of various biological processes related to vascular flow.


Assuntos
Técnicas de Cultura de Células/métodos , Perfusão , Engenharia Tecidual/métodos , Animais , Células Cultivadas , Fibroblastos , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos
11.
Analyst ; 145(19): 6342-6348, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32716439

RESUMO

Hypoxia is one of the major hallmarks of solid tumours and is associated with the poor prognosis of various cancers. A multicellular aggregate, termed a spheroid, has been used as a tumour model with a necrotic-like core for more than 45 years. Oxygen metabolism in spheroids has been studied using phosphorescence quenching and oxygen-sensitive electrodes. However, these conventional methods require chemical labelling and physical insertion of the electrode into each spheroid, which may be functionally and structurally disruptive. Scanning electrochemical microscopy (SECM) can non-invasively analyse oxygen metabolism. Here, we used SECM to investigate whether the changes of the internal structure of spheroids affect the oxygen metabolism. We investigated the oxygen consumption rate (OCR) of MCF-7 breast tumour spheroids with and without a necrotic-like core. A numerical simulation was used to describe a method for estimating the OCR of spheroids that settled at the bottom of the conventional culture plates. The OCR per spheroid volume decreased with increasing spheroid radius, indicating the limitation of the oxygen supply to the core of the MCF-7 spheroid. Formation of the necrotic-like core did not affect the oxygen metabolism significantly, implying that the core had minimal contribution to the OCR even before necrosis occurred. OCR analysis using SECM non-invasively monitors the change of oxygen metabolism in tumour spheroids. The approach is promising to evaluate various three-dimensional culture models.


Assuntos
Neoplasias , Esferoides Celulares , Hipóxia Celular , Humanos , Necrose , Oxigênio , Consumo de Oxigênio
12.
Biomaterials ; 229: 119547, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31710953

RESUMO

Tumor vasculature creates a hostile tumor microenvironment (TME) in vivo and nourishes cancers, resulting in cancer progression and drug resistance. To mimic the biochemical and biomechanical environments of tumors in vitro, several models integrated with a vascular network have been reported. However, the tumor responses to biochemical and biomechanical stimuli were evaluated under static conditions and failed to incorporate the effects of blood flow to tumors. In this study, we present a tumor-on-a-chip platform that enables the evaluation of tumor activities with intraluminal flow in an engineered tumor vascular network. The fibroblasts in the tumor spheroid induced angiogenic sprouts, which constructed a perfusable vascular network in a tumor spheroid. The perfusability of the engineered vascular network was preserved during the culture. Moreover, perfusion for over 24 h significantly increased the proliferation activities of tumor cells and decreased cell death in the spheroid. Drug administration under perfusion condition did not show the dose-dependent effects of anticancer drugs on tumor activities in contrast to the results under static conditions. Our results demonstrate the importance of flow in a vascular network for the evaluation of tumor activities in a drug screening platform.


Assuntos
Neoplasias , Preparações Farmacêuticas , Humanos , Dispositivos Lab-On-A-Chip , Neoplasias/tratamento farmacológico , Perfusão , Microambiente Tumoral
13.
Langmuir ; 35(40): 13003-13010, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31510745

RESUMO

Cooperativity of motor proteins is essential for intracellular transport. Although their motion is unidirectional, they often cause bidirectional movement by different types of motors as seen in organelles. However, in vitro assessments of such cellular functions are still inadequate owing to the experimental limitations in precisely patterning multiple motors. Here, we present an approach to immobilize two motor proteins, kinesin-1 and dynein, using the aqueous two-phase system (ATPS) made of poly(ethylene glycol) and dextran polymers. The negligible influence of polymer solutions on the attachment and velocity of motor proteins ensures the compatibility of using ATPS as the patterning technique. The selective fixation of kinesin and dynein was assessed using polarity-marked microtubules (PMMTs). Our experimental results show that on a patterned kinesin surface, 72% of PMMTs display minus-end leading motility, while on a dynein surface, 79% of PMMTs display plus-end leading motility. This work offers a universal and biocompatible method to pattern motor proteins of different classes at the nanoscale, providing a new route to study different cellular functions performed by molecular motors such as the formation of mitotic spindles.


Assuntos
Dextranos/química , Dineínas/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Polietilenoglicóis/química , Animais , Bioensaio , Dictyostelium , Humanos , Movimento (Física) , Suínos
14.
ACS Nano ; 12(12): 11975-11985, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30418736

RESUMO

Single-molecule fluorescence observation of adenosine triphosphate (ATP) is a powerful tool to elucidate the chemomechanical coupling of ATP with a motor protein. However, in total internal reflection fluorescence microscopy (TIRFM), available ATP concentration is much lower than that in the in vivo environment. To achieve single-molecule observation with a high signal-to-noise ratio, zero-mode waveguides (ZMWs) are utilized even at high fluorescent molecule concentrations in the micromolar range. Despite the advantages of ZMWs, the use of cytoskeletal filaments for single-molecule observation has not been reported because of difficulties in immobilization of cytoskeletal filaments in the cylindrical aperture of ZMWs. Here, we propose linear ZMWs (LZMWs) to visualize enzymatic reactions on cytoskeletal filaments, specifically kinesin-driven microtubule motility accompanied by ATP binding/unbinding. Finite element method simulation revealed excitation light confinement in a 100 nm wide slit of LZMWs. Single-molecule observation was then demonstrated with up to 1 µM labeled ATP, which was 10-fold higher than that available in TIRFM. Direct observation of binding/unbinding of ATP to kinesins that propel microtubules enabled us to find that a significant fraction of ATP molecules bound to kinesins were dissociated without hydrolysis. This highlights the advantages of LZMWs for single-molecule observation of proteins that interact with cytoskeletal filaments such as microtubules, actin filaments, or intermediate filaments.


Assuntos
Trifosfato de Adenosina/química , Citoesqueleto/química , Corantes Fluorescentes/química , Cinesinas/química , Microtúbulos/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Citoesqueleto/metabolismo , Cinesinas/metabolismo , Microscopia de Fluorescência , Microtúbulos/metabolismo , Tamanho da Partícula , Propriedades de Superfície
15.
Anal Chem ; 90(21): 12512-12518, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30350601

RESUMO

We present a microfluidic method for electrical lysis and RNA extraction from single fixed cells leveraging reversible cross-linker dithiobis(succinimidyl propionate) (DSP). Our microfluidic system captures a single DSP-fixed cell at a hydrodynamic trap, reverse-cross-links the DSP molecules on a chip with dithiothreitol, lyses the plasma membrane via electrical field, and extracts cytoplasmic RNA with isotachophoresis-aided nucleic acids extraction. All of the on-chip processes complete in less than 5 min. We demonstrated the method using K562 leukemia cells and benchmarked the performance of RNA extraction with reverse transcription quantitative polymerase chain reaction. We also demonstrated the integration of our method with single-cell RNA sequencing.


Assuntos
Técnicas Analíticas Microfluídicas , RNA Neoplásico/isolamento & purificação , Análise de Célula Única , Succinimidas/química , Eletrólitos/química , Humanos , Células K562 , RNA Neoplásico/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
16.
Genome Biol ; 19(1): 66, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29871653

RESUMO

We report a microfluidic system that physically separates nuclear RNA (nucRNA) and cytoplasmic RNA (cytRNA) from a single cell and enables single-cell integrated nucRNA and cytRNA-sequencing (SINC-seq). SINC-seq constructs two individual RNA-seq libraries, nucRNA and cytRNA, per cell, quantifies gene expression in the subcellular compartments, and combines them to create novel single-cell RNA-seq data. Leveraging SINC-seq, we discover distinct natures of correlation among cytRNA and nucRNA that reflect the transient physiological state of single cells. These data provide unique insights into the regulatory network of messenger RNA from the nucleus toward the cytoplasm at the single-cell level.


Assuntos
Núcleo Celular/genética , Fenômenos Fisiológicos Celulares/genética , Citoplasma/genética , Expressão Gênica/genética , Linhagem Celular Tumoral , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Células K562 , RNA/genética , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos
17.
Biomicrofluidics ; 12(4): 042204, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29861815

RESUMO

Current in vitro 3D culture models lack a vascular system to transport oxygen and nutrients, as well as cells, which is essential to maintain cellular viability and functions. Here, we describe a microfluidic method to generate a perfusable vascular network that can form inside 3D multicellular spheroids and functionally connect to microchannels. Multicellular spheroids containing endothelial cells and lung fibroblasts were embedded within a hydrogel inside a microchannel, and then, endothelial cells were seeded into both sides of the hydrogel so that angiogenic sprouts from the cell spheroids and the microchannels were anastomosed to form a 3D vascular network. Solution containing cells and reagents can be perfused inside the cell spheroids through the vascular network by injecting it into a microchannel. This method can be used to study cancer cell migration towards 3D co-culture spheroids through a vascular network. We recapitulated a bone-like microenvironment by culturing multicellular spheroids containing osteo-differentiated mesenchymal stem cells (MSCs), as well as endothelial cells, and fibroblasts in the device. After the formation of vascularized spheroids, breast cancer cells were injected into a microchannel connected to a vascular network and cultured for 7 days on-chip to monitor cellular migration. We demonstrated that migration rates of the breast cancer cells towards multicellular spheroids via blood vessels were significantly higher in the bone-like microenvironment compared with the microenvironment formed by undifferentiated MSCs. These findings demonstrate the potential value of the 3D vascularized spheroids-on-a-chip for modeling in vivo-like cellular microenvironments, drug delivery through blood vessels, and cellular interactions through a vascular network.

18.
Sci Rep ; 5: 18177, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26658024

RESUMO

The Escherichia coli RuvB hexameric ring motor proteins, together with RuvAs, promote branch migration of Holliday junction DNA. Zero mode waveguides (ZMWs) constitute of nanosized holes and enable the visualization of a single fluorescent molecule under micromolar order of the molecules, which is applicable to characterize the formation of RuvA-RuvB-Holliday junction DNA complex. In this study, we used ZMWs and counted the number of RuvBs binding to RuvA-Holliday junction DNA complex. Our data demonstrated that different nucleotide analogs increased the amount of Cy5-RuvBs binding to RuvA-Holliday junction DNA complex in the following order: no nucleotide, ADP, ATPγS, and mixture of ADP and ATPγS. These results suggest that not only ATP binding to RuvB but also ATP hydrolysis by RuvB facilitates a stable RuvA-RuvB-Holliday junction DNA complex formation.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , DNA Helicases/metabolismo , DNA Bacteriano/metabolismo , DNA Cruciforme/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Bactérias/genética , DNA Helicases/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Modelos Biológicos , Ligação Proteica , Transporte Proteico
19.
Sci Rep ; 4: 5281, 2014 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-24923426

RESUMO

Intracellular cargo is transported by multiple motor proteins. Because of the force balance of motors with mixed polarities, cargo moves bidirectionally to achieve biological functions. Here, we propose a microtubule gliding assay for a tug-of-war study of kinesin and dynein. A boundary of the two motor groups is created by photolithographically patterning gold to selectively attach kinesin to the glass and dynein to the gold surface using a self-assembled monolayer. The relationship between the ratio of two antagonistic motor numbers and the velocity is derived from a force-velocity relationship for each motor to calculate the detachment force and motor backward velocity. Although the tug-of-war involves >100 motors, values are calculated for a single molecule and reflect the collective dynein and non-collective kinesin functions when they work as a team. This assay would be useful for detailed in vitro analysis of intracellular motility, e.g., mitosis, where a large number of motors with mixed polarities are involved.


Assuntos
Dineínas/química , Cinesinas/química , Microtúbulos/química , Proteínas Motores Moleculares/química , Algoritmos , Transporte Biológico , Dineínas/metabolismo , Cinesinas/metabolismo , Cinética , Microtúbulos/metabolismo , Modelos Biológicos , Modelos Moleculares , Proteínas Motores Moleculares/metabolismo , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Gravação de Videoteipe
20.
Biomed Microdevices ; 14(4): 791-7, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22585136

RESUMO

A microfluidic device integrated with a Total Internal Reflection (TIR)-based chip for cell observation and analysis was developed. This integrated device enables in situ Total Internal Reflection Fluorescence Microscopy (TIRFM) on adherent cells cultured under continuous medium perfusion. This TIR-based chip, allows TIRFM to be easily performed on cells without the assembly of complicated optical components and cell culture chambers. The integrated device was evaluated by tracking the movement of fluorescent beads and monitoring the location of insulin granules in mouse pancreatic ß-cells. This system offers higher signal-to-noise (S/N) ratio than epi-fluorescence microscopy (EPIFM), and comparable image quality to commercial TIRFM systems when imaging insulin granules. We also detected repetitive changes in intracellular Ca(2+) concentration in MIN6-m9 cells stimulated with KCl, which demonstrates quick perfusion for cell analysis while maintaining high S/N ratio.


Assuntos
Técnicas Analíticas Microfluídicas/instrumentação , Microscopia de Fluorescência/instrumentação , Imagem Molecular/instrumentação , Perfusão/instrumentação , Animais , Cálcio/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Sobrevivência Celular , Insulina/metabolismo , Camundongos , Microesferas , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA