Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Blood Adv ; 8(7): 1651-1666, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38315834

RESUMO

ABSTRACT: Stress erythropoiesis can be influenced by multiple mediators through both intrinsic and extrinsic mechanisms in early erythroid precursors. Single-cell RNA sequencing was conducted on spleen tissue isolated from mice subjected to phenylhydrazine and serial bleeding to explore novel molecular mechanisms of stress erythropoiesis. Our results showed prominent emergence of early erythroblast populations under both modes of anemic stress. Analysis of gene expression revealed distinct phases during the development of emerging erythroid cells. Interestingly, we observed the presence of a "hiatus" subpopulation characterized by relatively low level of transcriptional activities that transitions between early stages of emerging erythroid cells, with moderate protein synthesis activities. Moreover, single-cell analysis conducted on macrophage populations revealed distinct transcriptional programs in Vcam1+ macrophages under stress. Notably, a novel marker, CD81, was identified for labeling central macrophages in erythroblastic islands (EBIs), which is functionally required for EBIs to combat anemic stress. These findings offer fresh insights into the intrinsic and extrinsic pathways of early erythroblasts' response to stress, potentially informing the development of innovative therapeutic approaches for addressing anemic-related conditions.


Assuntos
Anemia , Baço , Camundongos , Animais , Baço/metabolismo , Eritroblastos/metabolismo , Anemia/etiologia , Anemia/metabolismo , Eritropoese/fisiologia , Macrófagos/metabolismo
4.
Leukemia ; 37(10): 1969-1981, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37591943

RESUMO

A hallmark of T-cell acute lymphoblastic leukemia (T-ALL) is the dysregulated expression of oncogenic transcription factors (TFs), including TAL1, NOTCH1 and MYC. Rewiring of the transcriptional program disrupts the tightly controlled spatiotemporal expression of downstream target genes, thereby contributing to leukemogenesis. In this study, we first identify an evolutionarily conserved enhancer element controlling the MYCN oncogene (named enhMYCN) that is aberrantly activated by the TAL1 complex in T-ALL cells. TAL1-positive T-ALL cells are highly dependent on MYCN expression for their maintenance in vitro and in xenograft models. Interestingly, MYCN drives the expression of multiple genes involved in the mevalonate pathway, and T-ALL cells are sensitive to inhibition of HMG-CoA reductase (HMGCR), a rate-limiting enzyme of this pathway. Importantly, MYC and MYCN regulate the same targets and compensate for each other. Thus, MYCN-positive T-ALL cells display a dual dependence on the TAL1-MYCN and NOTCH1-MYC pathways. Together, our results demonstrate that enhMYCN-mediated MYCN expression is required for human T-ALL cells and implicate the TAL1-MYCN-HMGCR axis as a potential therapeutic target in T-ALL.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Proteína Proto-Oncogênica N-Myc/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Ácido Mevalônico , Proteína 1 de Leucemia Linfocítica Aguda de Células T/genética , Proteína 1 de Leucemia Linfocítica Aguda de Células T/metabolismo , Linfócitos T/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
5.
Front Oncol ; 13: 1116418, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36874114

RESUMO

We report a 69-year-old female who was a human T-cell leukemia virus type 1 carrier and exhibited a unique clinical course of developing three hematological malignancies within a short period: diffuse large B-cell lymphoma (DLBCL), chronic myelomonocytic leukemia (CMMoL), and acute myeloid leukemia (AML). Although the blast cells in AML showed typical morphological and immunophenotypical features of acute promyelocytic leukemia (APL), it did not harbor RARα gene fusion and thus initially diagnosed as APL-like leukemia (APLL). The patient developed heart failure with a fulminant clinical course and died soon after the diagnosis of APLL. Retrospective analysis with whole-genome sequencing detected a chromosomal rearrangement between KMT2A and ACTN4 gene loci both in CMMoL and APLL samples, but not in the DLBCL sample. Therefore, CMMoL and APLL were considered to be derived from the same clone with KMT2A translocation associated with prior immunochemotherapy. However, KMT2A rearrangement is rarely found in CMMoL in general and ACTN4 is also a rare partner of KMT2A translocation. Thus, this case did not follow typical transformational process of CMMoL or KMT2A-rearranged leukemia. Importantly, additional genetic alterations, including NRAS G12 mutation, were found in APLL, but not in CMMoL samples, suggesting that they might contribute to leukemic transformation. This report highlights the diverse effects of KMT2A translocation and NRAS mutation on the transformation of hematological cells as well as the importance of upfront sequencing analysis to detect genetic backgrounds for a better understanding of therapy-related leukemia.

6.
Haematologica ; 108(2): 367-381, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36073513

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is a malignancy of thymic T-cell precursors. Overexpression of oncogenic transcription factor TAL1 is observed in 40-60% of human T-ALL cases, frequently together with activation of the NOTCH1 and PI3K-AKT pathways. In this study, we performed chemical screening to identify small molecules that can inhibit the enhancer activity driven by TAL1 using the GIMAP enhancer reporter system. Among approximately 3,000 compounds, PIK- 75, a known inhibitor of PI3K and CDK, was found to strongly inhibit the enhancer activity. Mechanistic analysis demonstrated that PIK-75 blocks transcriptional activity, which primarily affects TAL1 target genes as well as AKT activity. TAL1-positive, AKT-activated T-ALL cells were very sensitive to PIK-75, as evidenced by growth inhibition and apoptosis induction, while T-ALL cells that exhibited activation of the JAK-STAT pathway were insensitive to this drug. Together, our study demonstrates a strategy targeting two types of core machineries mediated by oncogenic transcription factors and signaling pathways in T-ALL.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína 1 de Leucemia Linfocítica Aguda de Células T/genética , Proteína 1 de Leucemia Linfocítica Aguda de Células T/metabolismo , Janus Quinases/metabolismo , Transdução de Sinais , Fatores de Transcrição STAT/metabolismo , Fatores de Transcrição/genética , Linfócitos T/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
7.
Nat Commun ; 13(1): 7064, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36400777

RESUMO

The transcription factor MYB is a crucial regulator of hematopoietic stem and progenitor cells. However, the nature of lineage-specific enhancer usage of the Myb gene is largely unknown. We identify the Myb -68 enhancer, a regulatory element which marks basophils and mast cells. Using the Myb -68 enhancer activity, we show a population of granulocyte-macrophage progenitors with higher potential to differentiate into basophils and mast cells. Single cell RNA-seq demonstrates the differentiation trajectory is continuous from progenitors to mature basophils in vivo, characterizes bone marrow cells with a gene signature of mast cells, and identifies LILRB4 as a surface marker of basophil maturation. Together, our study leads to a better understanding of how MYB expression is regulated in a lineage-associated manner, and also shows how a combination of lineage-related reporter mice and single-cell transcriptomics can overcome the rarity of target cells and enhance our understanding of gene expression programs that control cell differentiation in vivo.


Assuntos
Basófilos , Hematopoese , Camundongos , Animais , Contagem de Leucócitos , Diferenciação Celular/genética , Células-Tronco/metabolismo
8.
Leukemia ; 36(9): 2293-2305, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35908104

RESUMO

Adult T-cell leukemia/lymphoma (ATL) is a genetically complex hematological malignancy derived from mature T cells. Using an integrative approach, we previously identified genes recurrently associated with super-enhancers in ATL. One of those genes was TP73, a TP53 family gene; however, the roles and function of TP73 and its super-enhancer in ATL pathogenesis are poorly understood. Our study demonstrates that TP73 is highly activated under the control of a super-enhancer in ATL cells but not in normal T cells or other hematological malignancies examined. Full-length TP73 is required for ATL cell maintenance in vitro and in vivo via the regulation of cell proliferation and DNA damage response pathways. Notably, recurrent deletions of TP73 exons 2-3 were observed in a fraction of primary ATL cases that harbored the super-enhancer, while induction of this deletion in cell lines further increased proliferation and mutational burden. Our study suggests that formation of the TP73 intragenic super-enhancer and genetic deletion are likely sequentially acquired in relation to intracellular state of ATL cells, which leads to functional alteration of TP73 that confers additional clonal advantage.


Assuntos
Leucemia-Linfoma de Células T do Adulto , Adulto , Proliferação de Células , Éxons , Humanos , Mutação , Sequências Reguladoras de Ácido Nucleico
9.
Blood Adv ; 6(18): 5330-5344, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-35482445

RESUMO

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and aggressive hematologic malignancy with poor clinical outcomes. Dysregulated MYC expression, which is associated with protein arginine methyltransferase 5 (PRMT5) dependency, is a recurrent feature of BPDCN. Although recent studies have reported a PRMT5 gene signature in BPDCN patient samples, the role of PRMT5 in BPDCN remains unexplored. Here, we demonstrate that BPDCN is highly sensitive to PRMT5 inhibition. Consistent with the upregulation of PRMT5 in BPDCN, we show that pharmacological inhibition (GSK3326595) of PRMT5 inhibits the growth of the patient-derived BPDCN cell line CAL-1 in vitro and mitigated tumor progression in our mouse xenograft model. Interestingly, RNA-sequencing (RNA-seq) analysis revealed that PRMT5 inhibition increases intron retention in several key RNA methylation genes, including METTL3, which was accompanied by a dose-dependent decrease in METTL3 expression. Notably, the function of cellular m6A RNA modification of METTL3 was also affected by PRMT5 inhibition in CAL-1 cells. Intriguingly, METTL3 depletion in CAL-1 caused a significant increase in interferon (IFN) signaling, which was further elevated upon PRMT5 inhibition. Importantly, we discovered that this increase in IFN signaling attenuated the sensitivity of METTL3-depleted CAL-1 cells to PRMT5 inhibition. Correspondingly, stimulation of IFN signaling via TLR7 agonists weakened CAL-1 cell sensitivity to PRMT5 inhibition. Overall, our findings implicate PRMT5 as a therapeutic target in BPDCN and provide insight into the involvement of METTL3 and the IFN pathway in regulating the response to PRMT5 inhibition.


Assuntos
Neoplasias Hematológicas , Transtornos Mieloproliferativos , Neoplasias Cutâneas , Animais , Células Dendríticas/metabolismo , Neoplasias Hematológicas/genética , Humanos , Interferons/metabolismo , Metiltransferases/metabolismo , Camundongos , Transtornos Mieloproliferativos/patologia , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , RNA/metabolismo , Neoplasias Cutâneas/genética , Receptor 7 Toll-Like/metabolismo
10.
Nat Commun ; 12(1): 2085, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33837194

RESUMO

Long-term infection of the stomach with Helicobacter pylori can cause gastric cancer. However, the mechanisms by which the bacteria adapt to the stomach environment are poorly understood. Here, we show that a small non-coding RNA of H. pylori (HPnc4160, also known as IsoB or NikS) regulates the pathogen's adaptation to the host environment as well as bacterial oncoprotein production. In a rodent model of H. pylori infection, the genomes of bacteria isolated from the stomach possess an increased number of T-repeats upstream of the HPnc4160-coding region, and this leads to reduced HPnc4160 expression. We use RNA-seq and iTRAQ analyses to identify eight targets of HPnc4160, including genes encoding outer membrane proteins and oncoprotein CagA. Mutant strains with HPnc4160 deficiency display increased colonization ability of the mouse stomach, in comparison with the wild-type strain. Furthermore, HPnc4160 expression is lower in clinical isolates from gastric cancer patients than in isolates derived from non-cancer patients, while the expression of HPnc4160's targets is higher in the isolates from gastric cancer patients. Therefore, the small RNA HPnc4160 regulates H. pylori adaptation to the host environment and, potentially, gastric carcinogenesis.


Assuntos
Adaptação Fisiológica/genética , Infecções por Helicobacter/patologia , Helicobacter pylori/fisiologia , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/metabolismo , Neoplasias Gástricas/microbiologia , Animais , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Carcinogênese , Modelos Animais de Doenças , Mucosa Gástrica/microbiologia , Mucosa Gástrica/patologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Genoma Bacteriano/genética , Gerbillinae , Infecções por Helicobacter/microbiologia , Helicobacter pylori/isolamento & purificação , Helicobacter pylori/patogenicidade , Interações entre Hospedeiro e Microrganismos , Humanos , Masculino , Mutação , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , RNA-Seq , Neoplasias Gástricas/patologia
11.
Genome Res ; 26(1): 140-50, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26668163

RESUMO

The tunicate Ciona intestinalis, an invertebrate chordate, has recently emerged as a powerful model organism for gene regulation analysis. However, few studies have been conducted to identify and characterize its transcription start sites (TSSs) and promoters at the genome-wide level. Here, using TSS-seq, we identified TSSs at the genome-wide scale and characterized promoters in C. intestinalis. Specifically, we identified TSS clusters (TSCs), high-density regions of TSS-seq tags, each of which appears to originate from an identical promoter. TSCs were found not only at known TSSs but also in other regions, suggesting the existence of many unknown transcription units in the genome. We also identified candidate promoters of 79 ribosomal protein (RP) genes, each of which had the major TSS in a polypyrimidine tract and showed a sharp TSS distribution like human RP gene promoters. Ciona RP gene promoters, however, did not appear to have typical TATA boxes, unlike human RP gene promoters. In Ciona non-RP promoters, two pyrimidine-purine dinucleotides, CA and TA, were frequently used as TSSs. Despite the absence of CpG islands, Ciona TATA-less promoters showed low expression specificity like CpG-associated human TATA-less promoters. By using TSS-seq, we also predicted trans-spliced gene TSSs and found that their downstream regions had higher G+T content than those of non-trans-spliced gene TSSs. Furthermore, we identified many putative alternative promoters, some of which were regulated in a tissue-specific manner. Our results provide valuable information about TSSs and promoter characteristics in C. intestinalis and will be helpful in future analysis of transcriptional regulation in chordates.


Assuntos
Ciona intestinalis/genética , Regiões Promotoras Genéticas , Sítio de Iniciação de Transcrição , Animais , Drosophila/genética , Regulação da Expressão Gênica , Humanos , Família Multigênica , Trans-Splicing
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA