Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Trop Med Int Health ; 23(9): 936-942, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29924907

RESUMO

OBJECTIVES: There is a clear need for new strategies of leishmaniasis treatment. This work was conducted to evaluate the efficacy of the co-administration of tamoxifen and meglumine antimoniate (SbV ) in a phase II pilot clinical trial in localised cutaneous leishmaniasis patients. METHODS: A randomised controlled pilot clinical trial was conducted to evaluate the efficacy and safety of oral (40 mg/day for 20 days) or topical tamoxifen (0.1% tamoxifen citrate for 20 days) combined with meglumine antimoniate (20 mg SbV /kg/day for 20 days) vs. a standard SbV protocol (20 mg/kg/day for 20 days) for the treatment of cutaneous leishmaniasis. Primary outcome was complete epithelisation of the lesion 6 months after the end of treatment. Secondary outcomes were lesion healing 2 months after the end of treatment and frequency and severity of adverse events. RESULTS: A total of 38 subjects were included in the trial, 15 were treated with standard SbV and 23 with the combination of tamoxifen and SbV . Of the patients treated with the co-administration scheme, 12 received tamoxifen orally and 11 were treated with topical tamoxifen. Tamoxifen administered by the oral or topical routes was well tolerated. Cure rates 6 months after the end of treatment per intention to treat were 40% in the group treated with the standard SbV scheme, and 36.4% and 58%, respectively, for groups treated with SbV plus topical or oral tamoxifen. CONCLUSIONS: In the doses and schemes used in this study, co-administration of oral tamoxifen and SbV resulted in higher cure rates in comparison with the standard scheme of treatment, although not to statistically significant levels.


Assuntos
Antiprotozoários/uso terapêutico , Leishmaniose Cutânea/tratamento farmacológico , Antimoniato de Meglumina/uso terapêutico , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Tamoxifeno/uso terapêutico , Administração Oral , Administração Tópica , Adulto , Antiprotozoários/administração & dosagem , Quimioterapia Combinada , Feminino , Humanos , Masculino , Antimoniato de Meglumina/administração & dosagem , Pessoa de Meia-Idade , Projetos Piloto , Moduladores Seletivos de Receptor Estrogênico/administração & dosagem , Tamoxifeno/administração & dosagem , Resultado do Tratamento , Adulto Jovem
2.
J Inorg Biochem ; 172: 9-15, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28414928

RESUMO

Leishmaniasis is an infection caused by protozoa of the genus Leishmania and transmitted by sandflies. Current treatments are expensive and time-consuming, involving Sb(V)-based compounds, lipossomal amphotericin B and miltefosine. Recent studies suggest that inhibition of trypanothione reductase (TR) could be a specific target in the development of new drugs because it is essential and exclusive to trypanosomatids. This work presents the synthesis and characterization of new iminodibenzyl derivatives (dado) with ethylenediamine (ea), ethanolamine (en) and diethylenetriamine (dien) and their copper(II) complexes. Computational methods indicated that the complexes were highly lipophilic. Pro-oxidant activity assays by oxidation of the dihydrorhodamine (DHR) fluorimetric probe showed that [Cu(dado-ea)]2+ has the highest rate of oxidation, independent of H2O2 concentration. The toxicity to L. amazonensis promastigotes and RAW 264,7 macrophages was assessed, showing that dado-en was the most active new compound. Complexation to copper did not have an appreciable effect on the toxicity of the compounds.


Assuntos
Benzilaminas/química , Leishmania/efeitos dos fármacos , Animais , Antiprotozoários/síntese química , Antiprotozoários/química , Antiprotozoários/farmacologia , Antiprotozoários/toxicidade , Benzilaminas/farmacologia , Benzilaminas/toxicidade , Simulação por Computador , Cobre/química , Relação Dose-Resposta a Droga , Concentração Inibidora 50 , Leishmania/enzimologia , Ligantes , Macrófagos/efeitos dos fármacos , NADH NADPH Oxirredutases/antagonistas & inibidores , Oxirredução
3.
Planta Med ; 83(11): 912-920, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28264205

RESUMO

This is a comparative study on the intraspecific chemical variability of Aristolochia cordigera species, collected in two different regions of Brazil, Biome Cerrado (semiarid) and Biome Amazônia (coastal). The use of GC-MS and statistical methods led to the identification of 56 compounds. A higher percentage of palmitone and germacrene-D in the hexanes extracts of the leaves of plants from these respective biomes was observed. Phytochemical studies on the extracts led to the isolation and identification of 19 known compounds, including lignans, neolignans, aristolochic acids, indole-ß-carboline, and indole alkaloids. In addition, two new indole alkaloids, 3,4-dihydro-hyrtiosulawesine and 6-O-(ß-glucopyranosyl)hyrtiosulawesine, were isolated and a new neolignan, cis-eupomatenoid-7, was obtained in a mixture with its known isomer eupomatenoid-7. Their structures were determined by spectroscopic methods, mainly by 1D- and 2D-NMR. The occurrence of indole alkaloids is being described for the first time in the Aristolochiaceae family. Moreover, the in vitro susceptibility of intracellular amastigote and promastigote forms of Leishmania amazonensis to the alkaloids and eupomatenoid-7 were evaluated. This neolignan exhibited low activity against promastigotes (IC50 = 46 µM), while the alkaloids did not show inhibitory activity. The new alkaloid 6-O-(ß-glucopyranosyl)hyrtiosulawesine exhibited activity in the low micromolar range against Plasmodium falciparum, with an IC50 value of 5 µM and a selectivity index higher than 50.


Assuntos
Antiprotozoários/farmacologia , Aristolochia/química , Citotoxinas/farmacologia , Alcaloides Indólicos/farmacologia , Lignanas/farmacologia , Extratos Vegetais/farmacologia , Antiprotozoários/química , Antiprotozoários/isolamento & purificação , Brasil , Linhagem Celular Tumoral , Citotoxinas/química , Citotoxinas/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Alcaloides Indólicos/química , Alcaloides Indólicos/isolamento & purificação , Leishmania/efeitos dos fármacos , Lignanas/química , Lignanas/isolamento & purificação , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Plasmodium falciparum/efeitos dos fármacos
4.
Int J Parasitol Drugs Drug Resist ; 5(3): 77-83, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26150922

RESUMO

Tamoxifen, an antineoplastic agent, is active in vitro and in vivo against the parasitic protozoa Leishmania. As part of our efforts to unravel this drug's mechanisms of action against the parasite and understand how resistance could arise, we tried to select tamoxifen-resistant Leishmania amazonensis. Three different strategies to generate tamoxifen resistant mutants were used: stepwise increase in drug concentration applied to promastigote cultures, chemical mutagenesis followed by drug selection and treatment of infected mice followed by selection of amastigotes. For amastigote selection, we employed a method with direct plating of parasites recovered from lesions into semi-solid media. Tamoxifen resistant parasites were not rescued by any of these methods. Miltefosine was used as a control in selection experiments and both stepwise selection and chemical mutagenesis allowed successful isolation of miltefosine resistant mutants. These findings are consistent with a multi-target mode of action to explain tamoxifen's leishmanicidal properties. Considering that drug resistance is a major concern in anti-parasitic chemotherapy, these findings support the proposition of using tamoxifen as a partner in drug combination schemes for the treatment of leishmaniasis.


Assuntos
Resistência a Medicamentos , Leishmania/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Tamoxifeno/uso terapêutico , Animais , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Fosforilcolina/análogos & derivados , Fosforilcolina/uso terapêutico , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Tamoxifeno/administração & dosagem , Tamoxifeno/farmacologia
5.
PLoS Negl Trop Dis ; 8(5): e2842, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24810565

RESUMO

BACKGROUND: The treatment of leishmaniasis relies mostly on parenteral drugs with potentially serious adverse effects. Additionally, parasite resistance in the treatment of leishmaniasis has been demonstrated for the majority of drugs available, making the search for more effective and less toxic drugs and treatment regimens a priority for the control of leishmaniasis. The aims of this study were to evaluate the antileishmanial activity of raloxifene in vitro and in vivo and to investigate its mechanism of action against Leishmania amazonensis. METHODOLOGY/PRINCIPAL FINDINGS: Raloxifene was shown to possess antileishmanial activity in vitro against several species with EC50 values ranging from 30.2 to 38.0 µM against promastigotes and from 8.8 to 16.2 µM against intracellular amastigotes. Raloxifene's mechanism of action was investigated through transmission electron microscopy and labeling with propidium iodide, DiSBAC2(3), rhodamine 123 and monodansylcadaverine. Microscopic examinations showed that raloxifene treated parasites displayed autophagosomes and mitochondrial damage while the plasma membrane remained continuous. Nonetheless, plasma membrane potential was rapidly altered upon raloxifene treatment with initial hyperpolarization followed by depolarization. Loss of mitochondrial membrane potential was also verified. Treatment of L. amazonensis-infected BALB/c mice with raloxifene led to significant decrease in lesion size and parasite burden. CONCLUSIONS/SIGNIFICANCE: The results of this work extend the investigation of selective estrogen receptor modulators as potential candidates for leishmaniasis treatment. The antileishmanial activity of raloxifene was demonstrated in vitro and in vivo. Raloxifene produces functional disorder on the plasma membrane of L. amazonensis promastigotes and leads to functional and morphological disruption of mitochondria, which culminate in cell death.


Assuntos
Moduladores de Receptor Estrogênico/farmacologia , Leishmania mexicana/efeitos dos fármacos , Leishmaniose Cutânea/parasitologia , Cloridrato de Raloxifeno/farmacologia , Tripanossomicidas/farmacologia , Animais , Membrana Celular/efeitos dos fármacos , Estágios do Ciclo de Vida/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Vacúolos/efeitos dos fármacos
6.
Chem Biol Drug Des ; 83(3): 289-96, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24119198

RESUMO

Tamoxifen has been shown to be active in vitro against Leishmania and effective in the treatment for leishmaniasis in murine models. Through the screening of a compound library of estrogen receptor modulator analogs, we identified the major characteristics required for antileishmanial activity. To overcome the difficulties presented by tamoxifen's propensity for E/Z isomerization, we used the 2-arylbenzothiophene compound BTP as a more stable alternative. Directed screening of a small compound library based on BTP led to active compounds against Leishmania. Subsequent structure-activity data for the synthetic 2-arylbenzothiophenes evaluated in this study indicate that optimal antileishmanial potency is dependent on the presence of two basic side chains. In addition, the primary structural features required for estrogen receptor binding, the phenols, are not required for inhibiting parasitic growth. Significantly, the most active antileishmanial benzothiophenes lack the pharmacophore for estrogen receptor activity and therefore address potential concerns about the undesirable effects of using selective estrogen receptor modulators in women and children with leishmaniasis. Three compounds selected from the screening have shown consistent activity against all species and stages of Leishmania in vitro although improvements in selectivity are needed. These compounds represent viable starting points for further optimization as antileishmanial agents.


Assuntos
Antiprotozoários/farmacologia , Leishmania/efeitos dos fármacos , Tiofenos/química , Tiofenos/farmacologia , Animais , Antiprotozoários/síntese química , Antiprotozoários/química , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Avaliação Pré-Clínica de Medicamentos , Estereoisomerismo , Relação Estrutura-Atividade , Tiofenos/síntese química , Células Vero
7.
Mem Inst Oswaldo Cruz ; 105(7): 945-8, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21120371

RESUMO

The activity of the antineoplastic drug tamoxifen was evaluated against Trypanosoma cruzi. In vitro activity was determined against epimastigote, trypomastigote and amastigote forms of CL14, Y and Y benznidazole resistant T. cruzi strains. Regardless of the strain used, the drug was active against all life-cycle stages of the parasite with a half maximal effective concentration ranging from 0.7-17.9 µM. Two experimental models of acute Chagas disease were used to evaluate the in vivo efficacy of treatment with tamoxifen. No differences in parasitemia and mortality were observed between control mock-treated and tamoxifen-treated mice.


Assuntos
Doença de Chagas/tratamento farmacológico , Tamoxifeno/uso terapêutico , Tripanossomicidas/uso terapêutico , Trypanosoma cruzi/efeitos dos fármacos , Doença Aguda , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Parasitemia/tratamento farmacológico , Falha de Tratamento
8.
Trop Med Int Health ; 15(1): 68-76, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19874570

RESUMO

Resistance of Leishmania parasites to specific chemotherapy has become a well-documented problem in the Indian subcontinent in recent years but only a few studies have focused on the susceptibility of American Leishmania isolates. Our susceptibility assays to meglumine antimoniate were performed against intracellular amastigotes after standardizing an in vitro model of macrophage infection appropriate for Leishmania (Viannia) braziliensis isolates. For the determination of promastigote susceptibility to amphotericin B, we developed a simplified MTT-test. The sensitivity in vitro to meglumine antimoniate and amphotericin B of 13 isolates obtained from Brazilian patients was determined. L. (V.) braziliensis isolates were more susceptible to meglumine antimoniate than Leishmania (Leishmania) amazonensis. EC(50), EC(90) and activity indexes (calculated over the sensitivity of reference strains), suggested that all isolates tested were susceptible in vitro to meglumine antimoniate, and did not show association with the clinical outcomes. Isolates were also uniformly susceptible in vitro to amphotericin B.


Assuntos
Anfotericina B/farmacologia , Antiprotozoários/farmacologia , Leishmania braziliensis/efeitos dos fármacos , Leishmania mexicana/efeitos dos fármacos , Meglumina/farmacologia , Compostos Organometálicos/farmacologia , Animais , Humanos , Leishmania braziliensis/patogenicidade , Leishmania mexicana/patogenicidade , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/patologia , Macrófagos/parasitologia , Antimoniato de Meglumina , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Parasitária/métodos
9.
Biomed Pharmacother ; 63(9): 643-9, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19321295

RESUMO

Limonene is a monoterpene that has antitumoral, antibiotic and antiprotozoal activity. In this study we demonstrate the activity of limonene against Leishmania species in vitro and in vivo. Limonene killed Leishmania amazonensis promastigotes and amastigotes with 50% inhibitory concentrations of 252.0+/-49.0 and 147.0+/-46.0 microM, respectively. Limonene was also effective against Leishmania major, Leishmania braziliensis and Leishmania chagasi promastigotes. The treatment of L. amazonensis-infected macrophages with 300 microM limonene resulted in 78% reduction in infection rates. L. amazonensis-infected mice treated topically or intrarectally with limonene had significant reduction of lesion sizes. A significant decrease in the parasite load was shown in the lesions treated topically with limonene by histopathological examination. The intrarectal treatment was highly effective in decreasing the parasite burden, healing established lesions and suppressing the dissemination of ulcers. Limonene presents low toxicity in humans and has been shown to be effective as an agent for enhancing the percutaneous permeation of drugs. Our results suggest that limonene should be tested in different experimental models of infection by Leishmania.


Assuntos
Antiprotozoários/farmacologia , Cicloexenos/farmacologia , Leishmania/efeitos dos fármacos , Terpenos/farmacologia , Animais , Feminino , Limoneno , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Óxido Nítrico/biossíntese , Testes de Sensibilidade Parasitária
10.
J Antimicrob Chemother ; 63(2): 365-8, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19095684

RESUMO

OBJECTIVES: The aim of this study was to evaluate the efficacy of tamoxifen in vivo in experimental models of cutaneous (CL) and visceral leishmaniasis (VL) caused by Leishmania braziliensis and Leishmania chagasi, respectively. METHODS: Drug activity was assessed against intracellular amastigotes by treating infected macrophage cultures and evaluating the number of infected cells. In vivo efficacy of tamoxifen was tested in L. braziliensis-infected BALB/c mice and in L. chagasi-infected hamsters. Treatment with 20 mg/kg/day tamoxifen was administered for 15 days by the intraperitoneal route. Efficacy was evaluated through measurements of lesion size, parasite burden at the lesion site or liver and spleen and survival rate. RESULTS: Tamoxifen killed L. braziliensis and L. chagasi intracellular amastigotes with 50% inhibitory concentrations (IC(50)) of 1.9 +/- 0.2 and 2.4 +/- 0.3 microM, respectively. Treatment of L. braziliensis-infected mice with tamoxifen resulted in significant reductions in lesion size and 99% decrease in parasite burden, compared with mock-treated controls. L. chagasi-infected hamsters treated with tamoxifen showed significant reductions in liver parasite load expressed as Leishman-Donovan units and 95% to 98% reduction in spleen parasite burden. All animals treated with tamoxifen survived while 100% of the mock-treated animals had died by 11 weeks after the interruption of treatment. CONCLUSIONS: Tamoxifen is effective in the treatment of CL and VL in rodent models.


Assuntos
Antiprotozoários/uso terapêutico , Leishmania braziliensis/efeitos dos fármacos , Leishmania infantum/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Visceral/tratamento farmacológico , Tamoxifeno/uso terapêutico , Animais , Antiprotozoários/administração & dosagem , Cricetinae , Feminino , Concentração Inibidora 50 , Fígado/parasitologia , Fígado/patologia , Macrófagos/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Parasitária , Pele/parasitologia , Pele/patologia , Baço/parasitologia , Baço/patologia , Análise de Sobrevida , Tamoxifeno/administração & dosagem , Resultado do Tratamento
11.
PLoS Negl Trop Dis ; 2(6): e249, 2008 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-18545685

RESUMO

BACKGROUND: Chemotherapy is still a critical issue in the management of leishmaniasis. Until recently, pentavalent antimonials, amphotericin B or pentamidine compounded the classical arsenal of treatment. All these drugs are toxic and have to be administered by the parenteral route. Tamoxifen has been used as an antiestrogen in the treatment and prevention of breast cancer for many years. Its safety and pharmacological profiles are well established in humans. We have shown that tamoxifen is active as an antileishmanial compound in vitro, and in this paper we analyzed the efficacy of tamoxifen for the treatment of mice infected with Leishmania amazonensis, an etiological agent of localized cutaneous leishmaniasis and the main cause of diffuse cutaneous leishmaniasis in South America. METHODOLOGY/PRINCIPAL FINDINGS: BALB/c mice were infected with L. amazonensis promastigotes. Five weeks post-infection, treatment with 15 daily intraperitoneal injections of 20 mg/kg tamoxifen was administered. Lesion and ulcer sizes were recorded and parasite burden quantified by limiting dilution. A significant decrease in lesion size and ulcer development was noted in mice treated with tamoxifen as compared to control untreated animals. Parasite burden in the inoculation site at the end of treatment was reduced from 10(8.5+/-0.7) in control untreated animals to 10(5.0+/-0.0) in tamoxifen-treated mice. Parasite load was also reduced in the draining lymph nodes. The reduction in parasite number was sustained: 6 weeks after the end of treatment, 10(15.5+/-0.5) parasites were quantified from untreated animals, as opposed to 10(5.1+/-0.1) parasites detected in treated mice. CONCLUSIONS/SIGNIFICANCE: Treatment of BALB/c mice infected with L. amazonensis for 15 days with tamoxifen resulted in significant decrease in lesion size and parasite burden. BALB/c mice infected with L. amazonensis represents a model of extreme susceptibility, and the striking and sustained reduction in the number of parasites in treated animals supports the proposal of further testing of this drug in other models of leishmaniasis.


Assuntos
Leishmania/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Animais , Feminino , Leishmaniose/parasitologia , Camundongos , Camundongos Endogâmicos BALB C
12.
J Antimicrob Chemother ; 60(3): 526-34, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17584801

RESUMO

OBJECTIVES: This study was performed to investigate the activity of tamoxifen, an antioestrogen widely used in the treatment of breast cancer, against Leishmania. METHODS: Drug activity was assessed in vitro against axenically grown promastigotes and amastigotes through cell counting or by measuring the cleavage of MTT, and against intracellular amastigotes by treating infected macrophage cultures and evaluating the number of intracellular parasites. Intravacuolar pH changes induced inside parasitophorous vacuoles of Leishmania (Leishmania) amazonensis-infected macrophages were evaluated using the fluorescent probes SNAFL-calcein and Acridine Orange. RESULTS: Tamoxifen killed L. (L.) amazonensis promastigotes and amastigotes with 50% inhibitory concentrations (IC50) of 16.4 +/- 0.2 and 11.1 +/- 0.2 microM, respectively. The drug was also effective against Leishmania (Viannia) braziliensis, Leishmania (Leishmania) major, Leishmania (Leishmania) chagasi and Leishmania (Leishmania) donovani with IC(50) values ranging from 9.0 to 20.2 microM. Tamoxifen induced a rapid and long-lasting alkalinization of the vacuolar environment. We also provide evidence that tamoxifen is more effective against promastigotes and amastigotes at pH 7.5 when compared with cultures at pH 4.5. CONCLUSIONS: Tamoxifen effectively kills several Leishmania species and its activity against the parasite is increased by a modulation of the host cell intravacuolar pH induced by the drug.


Assuntos
Antineoplásicos Hormonais/farmacologia , Antineoplásicos Hormonais/uso terapêutico , Antiprotozoários , Leishmania mexicana/efeitos dos fármacos , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Vacúolos/química , Álcalis , Animais , Sobrevivência Celular/efeitos dos fármacos , Estradiol/farmacologia , Fibroblastos/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Leishmania mexicana/crescimento & desenvolvimento , Leishmania mexicana/ultraestrutura , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Vacúolos/efeitos dos fármacos , Vacúolos/parasitologia
13.
Nitric Oxide ; 15(3): 209-16, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16527502

RESUMO

Nitric oxide (NO) is considered a key molecule in the defense against intracellular pathogens, particularly Leishmania. The expression of inducible nitric oxide synthase and consequent production of NO by infected macrophages has been shown to correlate with leishmaniasis resistance in the murine model as well as in human patients. Nitric oxide donors have been used successfully in the treatment of cutaneous leishmaniasis in humans, although their mechanisms of action are not fully understood. In the present work, the dose-dependent cytotoxic effects of the NO-donors S-nitroso-N-acetyl-l-cysteine (SNAC) and S-nitrosoglutathione (GSNO) against Leishmania were evaluated. GSNO inhibited the growth of Leishmania major and Leishmania amazonensis with in vitro 50% inhibitory concentrations (IC(50)) of 68.8+/-22.86 and 68.9+/-7.9 micromol L(-1), respectively. The IC(50) for SNAC against L. major and L. amazonensis were, respectively, 54.6+/-8.3 and 181.6+/-12.5 micromol L(-1). The leishmanicidal activity of GSNO, but not of SNAC, was reversed by ascorbic acid (AA) and dithiothreitol (DTT), suggesting that the mechanism of action of GSNO is related to the transnitrosation of parasite proteins. These results demonstrate that SNAC and GSNO have leishmanicidal activity, and are thus potential therapeutic agents against cutaneous leishmaniasis.


Assuntos
Acetilcisteína/análogos & derivados , Leishmania major/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Doadores de Óxido Nítrico , S-Nitrosoglutationa , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Animais , Sobrevivência Celular/efeitos dos fármacos , Humanos , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/farmacologia , Doadores de Óxido Nítrico/uso terapêutico , S-Nitrosoglutationa/farmacologia , S-Nitrosoglutationa/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA