Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxicon ; 206: 1-13, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34896407

RESUMO

The potential biotechnological and biomedical applications of the animal venom components are widely recognized. Indeed, many components have been used either as drugs or as templates/prototypes for the development of innovative pharmaceutical drugs, among which many are still used for the treatment of human diseases. A specific South American rattlesnake, named Crotalus durissus terrificus, shows a venom composition relatively simpler compared to any viper or other snake species belonging to the Crotalus genus, although presenting a set of toxins with high potential for the treatment of several still unmet human therapeutic needs, as reviewed in this work. In addition to the main toxin named crotoxin, which is under clinical trials studies for antitumoral therapy and which has also anti-inflammatory and immunosuppressive activities, other toxins from the C. d. terrificus venom are also being studied, aiming for a wide variety of therapeutic applications, including as antinociceptive, anti-inflammatory, antimicrobial, antifungal, antitumoral or antiparasitic agent, or as modulator of animal metabolism, fibrin sealant (fibrin glue), gene carrier or theranostic agent. Among these rattlesnake toxins, the most relevant, considering the potential clinical applications, are crotamine, crotalphine and gyroxin. In this narrative revision, we propose to organize and present briefly the updates in the accumulated knowledge on potential therapeutic applications of toxins collectively found exclusively in the venom of this specific South American rattlesnake, with the objective of contributing to increase the chances of success in the discovery of drugs based on toxins.


Assuntos
Venenos de Crotalídeos , Crotoxina , Animais , Venenos de Crotalídeos/toxicidade , Crotalus , Humanos , Medicina de Precisão , América do Sul
2.
Sci Rep ; 10(1): 18513, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33116174

RESUMO

Nuclear distribution element-like 1 (NDEL1) enzyme activity is important for neuritogenesis, neuronal migration, and neurodevelopment. We reported previously lower NDEL1 enzyme activity in blood of treated first episode psychosis and chronic schizophrenia (SCZ) compared to healthy control subjects, with even lower activity in treatment resistant chronic SCZ patients, implicating NDEL1 activity in SCZ. Herein, higher NDEL1 activity was observed in the blood and several brain regions of a validated animal model for SCZ at baseline. In addition, long-term treatment with typical or atypical antipsychotics, under conditions in which SCZ-like phenotypes were reported to be reversed in this animal model for SCZ, showed a significant NDEL1 activity reduction in blood and brain regions which is in line with clinical data. Importantly, these results support measuring NDEL1 enzyme activity in the peripheral blood to predict changes in NDEL1 activity in the CNS. Also, acute administration of psychostimulants, at levels reported to induce SCZ-like phenotype in normal rat strains, increased NDEL1 enzyme activity in blood. Therefore, alterations in NDEL1 activity after treatment with antipsychotics or psychostimulants may suggest a possible modulation of NDEL1 activity secondary to neurotransmission homeostasis and provide new insights into the role of NDEL1 in SCZ pathophysiology.


Assuntos
Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/fisiologia , Esquizofrenia/metabolismo , Animais , Antipsicóticos/farmacologia , Encéfalo/metabolismo , Estimulantes do Sistema Nervoso Central/uso terapêutico , Clozapina/farmacologia , Cisteína Endopeptidases/sangue , Haloperidol/farmacologia , Hipocampo/metabolismo , Masculino , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/metabolismo , Transtornos Psicóticos/tratamento farmacológico , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Esquizofrenia/fisiopatologia
3.
Psychiatry Res ; 229(3): 702-7, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26296754

RESUMO

Previous studies of our group showed increased plasmatic Angiotensin-I Converting Enzyme (ACE) activity in schizophrenia (SCZ) patients compared to healthy controls, which was also associated to poor cognitive functioning. The ACE main product angiotensin II (Ang-II) has pro-inflammatory properties. Activated immune-inflammatory responses in SCZ and their association with disease progression and cognitive impairments are also well-described. Therefore, we examined here the association of plasma ACE activity and inflammatory mediators in 33 SCZ patients and 92 healthy controls. Non-parametric correlations were used to investigate the association of the enzyme activity and the peripheral levels of immune inflammatory markers as interleukins, tumor necrosis factor (TNF-α), and interferon (IFN-γ). Although no significant correlations could be observed for ACE activity and measured cytokines levels in healthy controls, a significant positive correlation for ACE enzymatic activity and IL-17a levels was observed in SCZ patients. Correcting for gender did not change these results. Moreover, a significant association for ACE activity and IFN-γ levels was also observed. To our knowledge, this is the first study to show a significant association between higher ACE activity and the levels of cytokines, namely IL-17a and IFN-γ, in patients with SCZ.


Assuntos
Citocinas/metabolismo , Interleucina-17/sangue , Peptidil Dipeptidase A/sangue , Esquizofrenia/genética , Adulto , Biomarcadores/sangue , Estudos de Casos e Controles , Citocinas/genética , Feminino , Transferência Ressonante de Energia de Fluorescência , Humanos , Interleucina-17/genética , Masculino , Peptidil Dipeptidase A/genética , Esquizofrenia/sangue , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/metabolismo
4.
Biochimie ; 94(12): 2791-3, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22898589

RESUMO

This work describes for the first time the characterization of the enzymatic features of gyroxin, a serine protease from Crotalus durissus terrificus venom, capable to induce barrel rotation syndrome in rodents. Measuring the hydrolysis of the substrate ZFR-MCA, the optimal pH for proteolytic cleavage of gyroxin was found to be at pH 8.4. Increases in the hydrolytic activity were observed at temperatures from 25 °C to 45 °C, and increases of NaCl concentration up to 1 M led to activity decreases. The preference of gyroxin for Arg residues at the substrate P1 position was also demonstrated. Taken together, this work describes the characterization of substrate specificity of gyroxin, as well as the effects of salt and pH on its enzymatic activity.


Assuntos
Venenos de Crotalídeos/enzimologia , Crotalus/metabolismo , Serina Proteases/metabolismo , Sequência de Aminoácidos , Animais , Arginina/química , Arginina/metabolismo , Sítios de Ligação , Biocatálise/efeitos dos fármacos , Dicroísmo Circular , Venenos de Crotalídeos/química , Venenos de Crotalídeos/metabolismo , Relação Dose-Resposta a Droga , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Dados de Sequência Molecular , Neurotoxinas/química , Neurotoxinas/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Serina Proteases/química , Cloreto de Sódio/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Especificidade por Substrato , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA