Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 14(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35205761

RESUMO

Gliomas develop and grow in the brain and central nervous system. Examining glioma grading processes is valuable for improving therapeutic challenges. One of the most extensive repositories storing transcriptomics data for gliomas is The Cancer Genome Atlas (TCGA). However, such big cohorts should be processed with caution and evaluated thoroughly as they can contain batch and other effects. Furthermore, biological mechanisms of cancer contain interactions among biomarkers. Thus, we applied an interpretable machine learning approach to discover such relationships. This type of transparent learning provides not only good predictability, but also reveals co-predictive mechanisms among features. In this study, we corrected the strong and confounded batch effect in the TCGA glioma data. We further used the corrected datasets to perform comprehensive machine learning analysis applied on single-sample gene set enrichment scores using collections from the Molecular Signature Database. Furthermore, using rule-based classifiers, we displayed networks of co-enrichment related to glioma grades. Moreover, we validated our results using the external glioma cohorts. We believe that utilizing corrected glioma cohorts from TCGA may improve the application and validation of any future studies. Finally, the co-enrichment and survival analysis provided detailed explanations for glioma progression and consequently, it should support the targeted treatment.

2.
Blood Adv ; 6(1): 152-164, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34619772

RESUMO

Numerous studies have been performed over the last decade to exploit the complexity of genomic and transcriptomic lesions driving the initiation of acute myeloid leukemia (AML). These studies have helped improve risk classification and treatment options. Detailed molecular characterization of longitudinal AML samples is sparse, however; meanwhile, relapse and therapy resistance represent the main challenges in AML care. To this end, we performed transcriptome-wide RNA sequencing of longitudinal diagnosis, relapse, and/or primary resistant samples from 47 adult and 23 pediatric AML patients with known mutational background. Gene expression analysis revealed the association of short event-free survival with overexpression of GLI2 and IL1R1, as well as downregulation of ST18. Moreover, CR1 downregulation and DPEP1 upregulation were associated with AML relapse both in adults and children. Finally, machine learning-based and network-based analysis identified overexpressed CD6 and downregulated INSR as highly copredictive genes depicting important relapse-associated characteristics among adult patients with AML. Our findings highlight the importance of a tumor-promoting inflammatory environment in leukemia progression, as indicated by several of the herein identified differentially expressed genes. Together, this knowledge provides the foundation for novel personalized drug targets and has the potential to maximize the benefit of current treatments to improve cure rates in AML.


Assuntos
Leucemia Mieloide Aguda , Transcriptoma , Adulto , Criança , Perfilação da Expressão Gênica , Genômica , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Mutação
3.
Genes (Basel) ; 12(6)2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064268

RESUMO

Normal karyotype acute myeloid leukemia (NK-AML) constitutes 20-25% of pediatric AML and detailed molecular analysis is essential to unravel the genetic background of this group. Using publicly available sequencing data from the TARGET-AML initiative, we investigated the mutational landscape of NK-AML in comparison with abnormal karyotype AML (AK-AML). In 164 (97.6%) of 168 independent NK-AML samples, at least one somatic protein-coding mutation was identified using whole-genome or targeted capture sequencing. We identified a unique mutational landscape of NK-AML characterized by a higher prevalence of mutated CEBPA, FLT3, GATA2, NPM1, PTPN11, TET2, and WT1 and a lower prevalence of mutated KIT, KRAS, and NRAS compared with AK-AML. Mutated CEBPA often co-occurred with mutated GATA2, whereas mutated FLT3 co-occurred with mutated WT1 and NPM1. In multivariate regression analysis, we identified younger age, WBC count ≥50 × 109/L, FLT3-internal tandem duplications, and mutated WT1 as independent predictors of adverse prognosis and mutated NPM1 and GATA2 as independent predictors of favorable prognosis in NK-AML. In conclusion, NK-AML in children is characterized by a unique mutational landscape which impacts the disease outcome.


Assuntos
Cariótipo Anormal , Leucemia Mieloide Aguda/genética , Taxa de Mutação , Adolescente , Proteínas Estimuladoras de Ligação a CCAAT/genética , Criança , Pré-Escolar , Proteínas de Ligação a DNA/genética , Dioxigenases/genética , Feminino , Fator de Transcrição GATA2/genética , Humanos , Lactente , Leucemia Mieloide Aguda/patologia , Masculino , Nucleofosmina/genética , Prognóstico , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas WT1/genética , Adulto Jovem , Tirosina Quinase 3 Semelhante a fms/genética
4.
Blood Adv ; 5(3): 900-912, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33560403

RESUMO

Relapse is the leading cause of death of adult and pediatric patients with acute myeloid leukemia (AML). Numerous studies have helped to elucidate the complex mutational landscape at diagnosis of AML, leading to improved risk stratification and new therapeutic options. However, multi-whole-genome studies of adult and pediatric AML at relapse are necessary for further advances. To this end, we performed whole-genome and whole-exome sequencing analyses of longitudinal diagnosis, relapse, and/or primary resistant specimens from 48 adult and 25 pediatric patients with AML. We identified mutations recurrently gained at relapse in ARID1A and CSF1R, both of which represent potentially actionable therapeutic alternatives. Further, we report specific differences in the mutational spectrum between adult vs pediatric relapsed AML, with MGA and H3F3A p.Lys28Met mutations recurrently found at relapse in adults, whereas internal tandem duplications in UBTF were identified solely in children. Finally, our study revealed recurrent mutations in IKZF1, KANSL1, and NIPBL at relapse. All of the mentioned genes have either never been reported at diagnosis in de novo AML or have been reported at low frequency, suggesting important roles for these alterations predominantly in disease progression and/or resistance to therapy. Our findings shed further light on the complexity of relapsed AML and identified previously unappreciated alterations that may lead to improved outcomes through personalized medicine.


Assuntos
Leucemia Mieloide Aguda , Proteínas de Ciclo Celular , Criança , Genômica , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Mutação , Medicina de Precisão , Recidiva
5.
Cancer Inform ; 13: 85-91, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25089089

RESUMO

The tumor, node, metastasis (TNM) staging system has been regarded as one of the most widely used staging systems for solid cancer. The "T" is assigned a value according to the primary tumor size, whereas the "N" and "M" are dependent on the number of regional lymph nodes and the presence of distant metastasis, respectively. The current TNM model classifies stages into five crisp classes. This is unrealistic since the drastic modification in treatment that is based on a change in one class may be based on a slight shift around the class boundary. Moreover, the system considers any tumor that has distant metastasis as stage 4, disregarding the metastatic lesion concentration and size. We had handled the problem of T staging in previous studies using fuzzy logic. In this study, we focus on the fuzzification of N and M staging for more accurate and realistic modeling which may, in turn, lead to better treatment and medical decisions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA