Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39005378

RESUMO

The induction of tissue-specific vessels in in vitro living tissue systems remains challenging. Here, we directly differentiated human pluripotent stem cells into CD32b+ putative liver sinusoidal progenitors (iLSEP) by dictating developmental pathways. By devising an inverted multilayered air-liquid interface (IMALI) culture, hepatic endoderm, septum mesenchyme, arterial and sinusoidal quadruple progenitors self-organized to generate and sustain hepatocyte-like cells neighbored by divergent endothelial subsets composed of CD32blowCD31high, LYVE1+STAB1+CD32bhighCD31lowTHBD-vWF-, and LYVE1-THBD+vWF+ cells. Wnt2 mediated sinusoidal-to-hepatic intercellular crosstalk potentiates hepatocyte differentiation and branched endothelial network formation. Intravital imaging revealed iLSEP developed fully patent human vessels with functional sinusoid-like features. Organoid-derived hepatocyte- and sinusoid-derived coagulation factors enabled correction of in vitro clotting time with Factor V, VIII, IX, and XI deficient patients' plasma and rescued the severe bleeding phenotype in hemophilia A mice upon transplantation. Advanced organoid vascularization technology allows for interrogating key insights governing organ-specific vessel development, paving the way for coagulation disorder therapeutics.

2.
iScience ; 27(3): 109247, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38439969

RESUMO

In normal intestines, a fetal/regenerative/revival cell state can be induced upon inflammation. This plasticity in cell fate is also one of the current topics in human colorectal cancer (CRC). To dissect the underlying mechanisms, we generated human CRC organoids with naturally selected genetic mutation profiles and exposed them to two different conditions by modulating the extracellular matrix (ECM). Among tested mutation profiles, a fetal/regenerative/revival state was induced following YAP activation via a collagen type I-enriched microenvironment. Mechanistically, YAP transcription was promoted by activating AP-1 and TEAD-dependent transcription and suppressing intestinal lineage-determining transcription via mechanotransduction. The phenotypic conversion was also involved in chemoresistance, which could be potentially resolved by targeting the underlying YAP regulatory elements, a potential target of CRC treatment.

3.
iScience ; 26(3): 106142, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36879807

RESUMO

The potential of extrapulmonary ventilation pathways remains largely unexplored. Here, we assessed the enteral ventilation approach in hypoxic porcine models under controlled mechanical ventilation. 20 mL/kg of oxygenated perfluorodecalin (O2-PFD) was intra-anally delivered by a rectal tube. We simultaneously monitored arterial and pulmonary arterial blood gases every 2 min up to 30 min to determine the gut-mediated systemic and venous oxygenation kinetics. Intrarectal O2-PFD administration significantly increased the partial pressure of oxygen in arterial blood from 54.5 ± 6.4 to 61.1 ± 6.2 mmHg (mean ± SD) and reduced the partial pressure of carbon dioxide from 38.0 ± 5.6 to 34.4 ± 5.9 mmHg. Early oxygen transfer dynamics inversely correlate with baseline oxygenation status. SvO2 dynamic monitoring data indicated that oxygenation likely originated from the venous outflow of the broad segment of large intestine including the inferior mesenteric vein route. Enteral ventilation pathway offers an effective means for systemic oxygenation, thus warranting further clinical development.

4.
Cells ; 10(9)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34572147

RESUMO

The current process of meat production using livestock has significant effects on the global environment, including high emissions of greenhouse gases. In recent years, cultured meat has attracted attention as a way to acquire animal proteins. However, the lack of markers that isolate proliferating cells from bovine tissues and the complex structure of the meat make it difficult to culture meat in a dish. In this study, we screened 246 cell-surface antibodies by fluorescence-activated cell sorting for their capacity to form colonies and their suitability to construct spheroid "meat buds". CD29+ cells (Ha2/5 clone) have a high potency to form colonies and efficiently proliferate on fibronectin-coated dishes. Furthermore, the meat buds created from CD29+ cells could differentiate into muscle and adipose cells in a three-dimensional structure. The meat buds embedded in the collagen gel proliferated in the matrix and formed large aggregates. Approximately 10 trillion cells can theoretically be obtained from 100 g of bovine tissue by culturing and amplifying them using these methods. The CD29+ cell characteristics of bovine tissue provide insights into the production of meat alternatives in vitro.


Assuntos
Técnicas de Cultura de Células/métodos , Tecnologia de Alimentos/métodos , Produtos da Carne/análise , Adipócitos/metabolismo , Adipogenia/genética , Adipogenia/fisiologia , Tecido Adiposo/citologia , Animais , Bovinos , Diferenciação Celular/genética , Proliferação de Células/fisiologia , Células Cultivadas , Citometria de Fluxo/métodos , Gado/genética , Carne , Células-Tronco Mesenquimais/metabolismo , Esferoides Celulares/metabolismo , Células-Tronco/metabolismo
5.
Oncotarget ; 9(74): 33871-33883, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30338032

RESUMO

Insulin-like growth factors (IGFs) have been shown to induce proliferation of many types of cells. Insulin receptor substrates (IRSs) are major targets of IGF-I receptor (IGF-IR) tyrosine kinase activated by IGFs, and are known to play important roles in the activation of downstream signaling pathways, such as the Erk1/2 pathway. Dysregulation of IGF signaling represents a central tumor promoting principle in human carcinogenesis. Prostate carcinoma is highly dependent on the IGF/IGF-IR/IRS axis. Here we identified the deubiquitinase, ubiquitin specific peptidase 9X (USP9X) as a novel binding partner of IRS-2. In a human prostate carcinoma cell line, small interfering RNA (siRNA)-mediated knockdown of USP9X reduced IGF-IR as well as IRS-2 protein levels and increased their ubiquitination. Knockdown of USP9X suppressed basal activation of the Erk1/2 pathway, which was significantly restored by exogenous expression of IRS-2 but not by IGF-IR, suggesting that the stabilization of IRS-2 by USP9X is critical for basal Erk1/2 activation. Finally, we measured anchorage-independent cell growth, a characteristic cancer feature, by soft-agar colony formation assay. Knockdown of USP9X significantly reduced anchorage-independent cell growth of prostate carcinoma cell line. Taken all together, our findings indicate that USP9X is required for the promotion of prostate cancer growth by maintaining the activation of the Erk1/2 pathway through IRS-2 stabilization.

6.
Endocrinology ; 159(4): 1547-1560, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29390112

RESUMO

Most animals display retarded growth in adverse conditions; however, upon the removal of unfavorable factors, they often show quick growth restoration, which is known as "catch-up" growth. In zebrafish embryos, hypoxia causes growth arrest, but subsequent reoxygenation induces catch-up growth. Here, we report the role of insulin receptor substrate (Irs)1-mediated insulin/insulinlike growth factor signaling (IIS) and the involvement of stem cells in catch-up growth in reoxygenated zebrafish embryos. Disturbed irs1 expression attenuated IIS, resulting in greater inhibition in catch-up growth than in normal growth and forced IIS activation‒restored catch-up growth. The irs1 knockdown induced noticeable cell death in neural crest cells (NCCs; multipotent stem cells) under hypoxia, and the pharmacological/genetic ablation of NCCs hindered catch-up growth. Furthermore, inhibition of the apoptotic pathway by pan-caspase inhibition or forced activation of Akt signaling in irs1 knocked-down embryos blocked NCC cell death and rescued catch-up growth. Our data indicate that this multipotent stem cell is indispensable for embryonic catch-up growth and that Irs1-mediated IIS is a prerequisite for its survival under severe adverse environments such as prolonged hypoxia.


Assuntos
Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/fisiologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Células-Tronco Multipotentes/metabolismo , Crista Neural/metabolismo , Transdução de Sinais/fisiologia , Animais , Hipóxia/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Peixe-Zebra
7.
Artigo em Inglês | MEDLINE | ID: mdl-26074875

RESUMO

Insulin-like peptides, such as insulin-like growth factors (IGFs) and insulin, induce a variety of bioactivities, such as growth, differentiation, survival, increased anabolism, and decreased catabolism in many cell types and in vivo. In general, IGFs or insulin bind to IGF-I receptor (IGF-IR) or insulin receptor (IR), activating the receptor tyrosine kinase. Insulin receptor substrates (IRSs) are known to be major substrates of receptor kinases, mediating IGF/insulin signals to direct bioactivities. Recently, we discovered that IRSs form high-molecular-mass complexes (referred to here as IRSomes) even without IGF/insulin stimulation. These complexes contain proteins (referred to here as IRSAPs; IRS-associated proteins), which modulate tyrosine phosphorylation of IRSs by receptor kinases, control IRS stability, and determine intracellular localization of IRSs. In addition, in these complexes, we found not only proteins that are involved in RNA metabolism but also RNAs themselves. Thus, IRSAPs possibly contribute to modulation of IGF/insulin bioactivities. Since it is established that disorder of modulation of insulin-like activities causes various age-related diseases including cancer, we could propose that the IRSome is an important target for treatment of these diseases.

8.
PLoS One ; 6(10): e25655, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21991327

RESUMO

Insulin-like growth factors (IGFs) are well known to play essential roles in enhancement of myogenic differentiation. In this report we showed that initial IGF-I signal activation but long-term IGF-1 signal termination are required for myogenic differentiation. L6 myoblast stably transfected with myc-epitope tagged insulin receptor substrate-1, myc-IRS-1 (L6-mIRS1) was unable to differentiate into myotubes, indicating that IRS-1 constitutive expression inhibited myogenesis. To elucidate the molecular mechanisms underlying myogenic inhibition, IGF-I signaling was examined. IGF-I treatment of control L6 cells for 18 h resulted in a marked suppression of IGF-I stimulated IRS-1 association with the p85 PI 3-kinase and suppression of activation of Akt that correlated with a down regulation of IRS-1 protein. L6-mIRS1 cells, in contrast, had sustained high levels of IRS-1 protein following 18 h of IGF-I treatment with persistent p85 PI 3-kinase association with IRS-1, Akt phosphorylation and phosphorylation of the downstream Akt substrate, Foxo1. Consistent with Foxo1 phosphorylation, Foxo1 protein was excluded from the nuclei in L6-mIRS1 cells, whereas Foxo1 was localized in the nuclei in control L6 cells during induction of differentiation. In addition, L6 cells stably expressing a dominant-interfering form of Foxo1, Δ256Foxo1 (L6-Δ256Foxo1) were unable to differentiate into myotubes. Together, these data demonstrate that IGF-I regulation of Foxo1 nuclear localization is essential for the myogenic program in L6 cells but that persistent activation of IGF-1 signaling pathways results in a negative feedback to prevent myogenesis.


Assuntos
Diferenciação Celular , Núcleo Celular/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Desenvolvimento Muscular , Mioblastos/citologia , Mioblastos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Genes Dominantes/genética , Fator de Crescimento Insulin-Like I/farmacologia , Desenvolvimento Muscular/efeitos dos fármacos , Mutação/genética , Mioblastos/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Células Satélites de Músculo Esquelético/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA