Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Free Neuropathol ; 52024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39139503

RESUMO

We describe a case of a young patient with a recurrent pleomorphic xanthoastrocytoma (PXA) showing unusual cell-in-cell (CiC) phenomena. We observed mostly viable but also necrotic neutrophils engulfed within tumor cells. The recurrent tumor was immunopositive for BRAFV600E mutant protein and showed CDKN2 homozygous deletions typical of PXA. Both genetic alterations were also reported in the original primary tumor. Unlike the original tumor that was GFAP and Olig-2 immunopositive, the recurrent neoplasm was largely negative for GFAP and Olig-2 suggesting dedifferentiation. The large malignant cells that contained the neutrophils were negative for histiocytic and lymphohematopoietic markers. Whereas CDKN2 homozygous deletion is common in PXA, its presence is rare in histiocytic neoplasms. Both reactive astrocytes and glial neoplasms very rarely may engulf neutrophils in a process resembling emperipolesis or cellular cannibalism. Future work may clarify which type of CiC pathway is involved.

2.
J Neurooncol ; 166(3): 471-483, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38319496

RESUMO

OBJECTIVES: Neurocytomas (NCs) are rare intracranial tumors that can often be surgically resected. However, disease course is unpredictable in many patients and medical therapies are lacking. We have used whole exome sequencing to explore the molecular etiology for neurocytoma and assist in target identification to develop novel therapeutic interventions. METHODS: We used whole exome sequencing (WES) to compare the molecular landscape of 21 primary & recurrent NCs to five normal cerebellar control samples. WES data was analyzed using the Qiagen Clinical Insight program, variants of interest (VOI) were interrogated using ConSurf, ScoreCons, & Ingenuity Pathway Analysis Software to predict their potential functional effects, and Copy number variations (CNVs) in the genes of interest were analyzed by Genewiz (Azenta Life Sciences). RESULTS: Of 40 VOI involving thirty-six genes, 7 were pathogenic, 17 likely-pathogenic, and 16 of uncertain-significance. Of seven pathogenic NC associated variants, Glucosylceramidase beta 1 [GBA1 c.703T > C (p.S235P)] was mutated in 5/21 (24%), Coagulation factor VIII [F8 c.3637dupA (p.I1213fs*28)] in 4/21 (19%), Phenylalanine hydroxylase [PAH c.975C > A (p.Y325*)] in 3/21 (14%), and Fanconi anemia complementation group C [FANCC c.1162G > T (p.G388*)], Chromodomain helicase DNA binding protein 7 [CHD7 c.2839C > T (p.R947*)], Myosin VIIA [MYO7A c.940G > T (p.E314*)] and Dynein axonemal heavy chain 11 [DNAH11 c.3544C > T (p.R1182*)] in 2/21 (9.5%) NCs respectively. CNVs were noted in 85% of these latter 7 genes. Interestingly, a Carboxy-terminal domain RNA polymerase II polypeptide A small phosphatase 2 [CTDSP2 c.472G > A (p.E158K)] of uncertain significance was also found in > 70% of NC cases. INTERPRETATION: The variants of interest we identified in the NCs regulate a variety of neurological processes including cilia motility, cell metabolism, immune responses, and DNA damage repair and provide novel insights into the molecular pathogenesis of these extremely rare tumors.


Assuntos
Neurocitoma , Humanos , Sequenciamento do Exoma , Variações do Número de Cópias de DNA
3.
Cell Rep ; 42(7): 112790, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37436895

RESUMO

Cholesterol is a structural component of cell membranes. How rapidly growing tumor cells maintain membrane cholesterol homeostasis is poorly understood. Here, we found that glioblastoma (GBM), the most lethal brain tumor, maintains normal levels of membrane cholesterol but with an abundant presence of cholesteryl esters (CEs) in its lipid droplets (LDs). Mechanistically, SREBP-1 (sterol regulatory element-binding protein 1), a master transcription factor that is activated upon cholesterol depletion, upregulates critical autophagic genes, including ATG9B, ATG4A, and LC3B, as well as lysosome cholesterol transporter NPC2. This upregulation promotes LD lipophagy, resulting in the hydrolysis of CEs and the liberation of cholesterol from the lysosomes, thus maintaining plasma membrane cholesterol homeostasis. When this pathway is blocked, GBM cells become quite sensitive to cholesterol deficiency with poor growth in vitro. Our study unravels an SREBP-1-autophagy-LD-CE hydrolysis pathway that plays an important role in maintaining membrane cholesterol homeostasis while providing a potential therapeutic avenue for GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Neoplasias Encefálicas/metabolismo , Homeostase/fisiologia , Glioblastoma/patologia , Colesterol/metabolismo , Autofagia
4.
Neuro Oncol ; 25(12): 2221-2236, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-37436963

RESUMO

BACKGROUND: Schwannomas are common peripheral nerve sheath tumors that can cause severe morbidity given their stereotypic intracranial and paraspinal locations. Similar to many solid tumors, schwannomas and other nerve sheath tumors are primarily thought to arise due to aberrant hyperactivation of the RAS growth factor signaling pathway. Here, we sought to further define the molecular pathogenesis of schwannomas. METHODS: We performed comprehensive genomic profiling on a cohort of 96 human schwannomas, as well as DNA methylation profiling on a subset. Functional studies including RNA sequencing, chromatin immunoprecipitation-DNA sequencing, electrophoretic mobility shift assay, and luciferase reporter assays were performed in a fetal glial cell model following transduction with wildtype and tumor-derived mutant isoforms of SOX10. RESULTS: We identified that nearly one-third of sporadic schwannomas lack alterations in known nerve sheath tumor genes and instead harbor novel recurrent in-frame insertion/deletion mutations in SOX10, which encodes a transcription factor responsible for controlling Schwann cell differentiation and myelination. SOX10 indel mutations were highly enriched in schwannomas arising from nonvestibular cranial nerves (eg facial, trigeminal, vagus) and were absent from vestibular nerve schwannomas driven by NF2 mutation. Functional studies revealed these SOX10 indel mutations have retained DNA binding capacity but impaired transactivation of glial differentiation and myelination gene programs. CONCLUSIONS: We thus speculate that SOX10 indel mutations drive a unique subtype of schwannomas by impeding proper differentiation of immature Schwann cells.


Assuntos
Neoplasias de Bainha Neural , Neurilemoma , Neuroma Acústico , Humanos , Mutação INDEL , Ativação Transcricional , Neurilemoma/genética , Neurilemoma/patologia , Neuroma Acústico/patologia , Mutação , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo
5.
Neuropathology ; 43(6): 441-456, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37198977

RESUMO

Hyaline protoplasmic astrocytopathy (HPA) describes a rare histologic finding of eosinophilic, hyaline cytoplasmic inclusions in astrocytes, predominantly in the cerebral cortex. It has mainly been observed in children and adults with a history of developmental delay and epilepsy, frequently with focal cortical dysplasia (FCD), but the nature and significance of these inclusions are unclear. In this study, we review the clinical and pathologic features of HPA and characterize the inclusions and brain tissue in which they are seen in surgical resection specimens from five patients with intractable epilepsy and HPA compared to five patients with intractable epilepsy without HPA using immunohistochemistry for filamin A, previously shown to label these inclusions, and a variety of astrocytic markers including aldehyde dehydrogenase 1 family member L1 (ALDH1L1), SRY-Box Transcription Factor 9 (SOX9), and glutamate transporter 1/excitatory amino acid transporter 2 (GLT-1/EAAT2) proteins. The inclusions were positive for ALDH1L1 with increased ALDH1L1 expression in areas of gliosis. SOX9 was also positive in the inclusions, although to a lesser intensity than the astrocyte nuclei. Filamin A labeled the inclusions but also labeled reactive astrocytes in a subset of patients. The immunoreactivity of the inclusions for various astrocytic markers and filamin A as well as the positivity of filamin A in reactive astrocytes raise the possibility that these astrocytic inclusions may be the result of an uncommon reactive or degenerative phenomenon.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Criança , Adulto , Humanos , Filaminas/metabolismo , Hialina , Encéfalo/patologia , Astrócitos/patologia
6.
Neurooncol Adv ; 4(1): vdac030, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35386566

RESUMO

Background: Patients with isocitrate dehydrogenase (IDH) mutant gliomas have been associated with longer survival time than those that are IDH wild-type. Previous studies have shown the prognostic value of O 6 -methylguanine-DNA methyltransferase (MGMT) promoter methylation for glioblastoma multiforme (GBM), which are predominantly IDH wild-type. Little is known of the prognostic value of MGMT methylation status for IDH mutant gliomas. Methods: We retrospectively identified IDH mutant gliomas patients between 2011 and 2020 that were tested for MGMT promoter methylation. We generated Kaplan-Meier estimator curves and performed Cox proportional hazard models for overall survival (OS) and progression-free survival (PFS) to compare the outcomes of MGMT promoter methylated versus MGMT unmethylated patients. Results: Of 419 IDH mutant gliomas with MGMT promoter methylation testing, we identified 54 GBMs, 223 astrocytomas, and 142 oligodendrogliomas. 62.3% patients had MGMT methylated tumors while 37.7% were MGMT unmethylated. On Kaplan-Meier analysis, median OS for all MGMT methylated patients was 17.7 years and 14.6 years for unmethylated patients. Median PFS for all MGMT methylated patients was 7.0 years and for unmethylated patients 5.2 years. After univariate subgroup analysis, MGMT methylation is only prognostic for OS and PFS in GBM, and for OS in anaplastic oligodendroglioma and anaplastic oligodendroglioma for OS. In multivariate analysis, MGMT unmethylated GBM patients carry a higher risk of death (HR 7.72, 95% CI 2.10-28.33) and recurrence (HR 3.85, 95% CI 1.35-10.96). Conclusions: MGMT promoter methylation is associated with better OS and PFS for IDH mutant GBM. MGMT promoter methylation testing for other IDH mutant glioma subtypes may not provide additional information on prognostication.

7.
Sci Rep ; 12(1): 1078, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35058510

RESUMO

This study aimed to differentiate isocitrate dehydrogenase (IDH) mutation status with the voxel-wise clustering method of multiparametric magnetic resonance imaging (MRI) and to discover biological underpinnings of the clusters. A total of 69 patients with treatment-naïve diffuse glioma were scanned with pH-sensitive amine chemical exchange saturation transfer MRI, diffusion-weighted imaging, fluid-attenuated inversion recovery, and contrast-enhanced T1-weighted imaging at 3 T. An unsupervised two-level clustering approach was used for feature extraction from acquired images. The logarithmic ratio of the labels in each class within tumor regions was applied to a support vector machine to differentiate IDH status. The highest performance to predict IDH mutation status was found for 10-class clustering, with a mean area under the curve, accuracy, sensitivity, and specificity of 0.94, 0.91, 0.90, and 0.91, respectively. Targeted biopsies revealed that the tissues with labels 7-10 showed high expression levels of hypoxia-inducible factor 1-alpha, glucose transporter 3, and hexokinase 2, which are typical of IDH wild-type glioma, whereas those with labels 1 showed low expression of these proteins. In conclusion, A machine learning model successfully predicted the IDH mutation status of gliomas, and the resulting clusters properly reflected the metabolic status of the tumors.


Assuntos
Glioma/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Isocitrato Desidrogenase/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Análise por Conglomerados , Feminino , Glioma/genética , Glioma/patologia , Humanos , Isocitrato Desidrogenase/metabolismo , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética Multiparamétrica/métodos , Mutação/genética , Estudos Retrospectivos , Máquina de Vetores de Suporte
8.
Free Neuropathol ; 32022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37284162

RESUMO

Ependymomas have rarely been described to contain pigment other than melanin, neuromelanin, lipofuscin or a combination. In this case report, we present a pigmented ependymoma in the fourth ventricle of an adult patient and review 16 additional cases of pigmented ependymoma from the literature. A 46-year-old female showed up with hearing loss, headaches, and nausea. Magnetic resonance imaging revealed a 2.5 cm contrast-enhancing cystic mass in the fourth ventricle, which was resected. Intraoperatively, the tumor appeared grey-brown, cystic, and was adherent to the brainstem. Routine histology revealed a tumor with true rosettes, perivascular pseudorosettes and ependymal canals consistent with ependymoma, but also showed chronic inflammation and abundant distended pigmented tumor cells that mimicked macrophages in frozen and permanent sections. The pigmented cells were positive for GFAP and negative for CD163 consonant with glial tumor cells. The pigment was negative for Fontana-Masson, positive for Periodic-acid Schiff and autofluorescent, which coincide with characteristics of lipofuscin. Proliferation indices were low and H3K27me3 showed partial loss. H3K27me 3 is an epigenetic modification to the DNA packaging protein Histone H3 that indicates the tri-methylation of lysine 27 on histone H3 protein. This methylation classification was compatible with a posterior fossa group B ependymoma (EPN_PFB). The patient was clinically well without recurrence at three-month post-operative follow-up appointment. Our analysis of all 17 cases, including the one presented, shows that pigmented ependymomas are most common in the middle-aged with a median age of 42 years and most have a favorable outcome. However, one patient that also developed secondary leptomeningeal melanin accumulations died. Most (58.8%) arise in the 4th ventricle, while spinal cord (17.6%) and supratentorial locations (17.6%) were less common. The age of presentation and generally good prognosis raise the question of whether most other posterior fossa pigmented ependymomas may also fall into the EPN_PFB group, but additional study is required to address that question.

9.
Neuroimage Clin ; 32: 102882, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34911188

RESUMO

PURPOSE: To quantify abnormal metabolism of diffuse gliomas using "aerobic glycolytic imaging" and investigate its biological correlation. METHODS: All subjects underwent a pH-weighted amine chemical exchange saturation transfer spin-and-gradient-echo echoplanar imaging (CEST-SAGE-EPI) and dynamic susceptibility contrast perfusion MRI. Relative oxygen extraction fraction (rOEF) was estimated as the ratio of reversible transverse relaxation rate R2' to normalized relative cerebral blood volume. An aerobic glycolytic index (AGI) was derived by the ratio of pH-weighted image contrast (MTRasym at 3.0 ppm) to rOEF. AGI was compared between different tumor types (N = 51, 30 IDH mutant and 21 IDH wild type). Metabolic MR parameters were correlated with 18F-FDG uptake (N = 8, IDH wild-type glioblastoma), expression of key glycolytic proteins using immunohistochemistry (N = 38 samples, 21 from IDH mutant and 17 from IDH wild type), and bioenergetics analysis on purified tumor cells (N = 7, IDH wild-type high grade). RESULTS: AGI was significantly lower in IDH mutant than wild-type gliomas (0.48 ± 0.48 vs. 0.70 ± 0.48; P = 0.03). AGI was strongly correlated with 18F-FDG uptake both in non-enhancing tumor (Spearman, ρ = 0.81; P = 0.01) and enhancing tumor (ρ = 0.81; P = 0.01). AGI was significantly correlated with glucose transporter 3 (ρ = 0.71; P = 0.004) and hexokinase 2 (ρ = 0.73; P = 0.003) in IDH wild-type glioma, and monocarboxylate transporter 1 (ρ = 0.59; P = 0.009) in IDH mutant glioma. Additionally, a significant correlation was found between AGI derived from bioenergetics analysis and that estimated from MRI (ρ = 0.79; P = 0.04). CONCLUSION: AGI derived from molecular MRI was correlated with glucose uptake (18F-FDG and glucose transporter 3/hexokinase 2) and cellular AGI in IDH wild-type gliomas, whereas AGI in IDH mutant gliomas appeared associated with monocarboxylate transporter density.


Assuntos
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Glioma/diagnóstico por imagem , Glioma/genética , Humanos , Concentração de Íons de Hidrogênio , Imageamento por Ressonância Magnética , Mutação , Oxigênio , Perfusão
11.
Neurooncol Adv ; 3(1): vdab017, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33778493

RESUMO

BACKGROUND: Molecular profiling of gliomas is vital to ensure diagnostic accuracy, inform prognosis, and identify clinical trial options for primary and recurrent tumors. This study aimed to determine the accuracy of reporting the whole arm 1p19q codeletion status from the FoundationOne platform. METHODS: Testing was performed on glioma samples as part of clinical care and analyzed up to 395 cancer-associated genes (including IDH1/2). The whole arm 1p19q codeletion status was predicted from the same assay using a custom research-use only algorithm, which was validated using 463 glioma samples with available fluorescence in-situ hybridization (FISH) data. For 519 patients with available outcomes data, progression-free and overall survival were assessed based on whole arm 1p19q codeletion status derived from sequencing data. RESULTS: Concordance between 1p19q status based on FISH and our algorithm was 96.7% (449/463) with a positive predictive value (PPV) of 100% and a positive percent agreement (PPA) of 91.0%. All discordant samples were positive for codeletion by FISH and harbored genomic alterations inconsistent with oligodendrogliomas. Median overall survival was 168 months for the IDH1/2 mutant, codeleted group, and 122 months for IDH1/2 mutant-only (hazard ratio (HR): 0.42; P < .05). CONCLUSIONS: 1p19q codeletion status derived from FoundationOne testing is highly concordant with FISH results. Genomic profiling may be a reliable substitute for traditional FISH testing while also providing IDH1/2 status.

12.
EBioMedicine ; 66: 103294, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33773184

RESUMO

BACKGROUND: Cushing disease (CD), although rare, is a life-threatening disorder caused by an adrenocorticotropic hormone (ACTH)-secreting pituitary adenoma, which leads to excess adrenal-derived cortisol. Efficacious and safe medical therapies that control both hormonal hypersecretion and pituitary corticotroph tumor growth remain an unmet need in the management of CD. Translational research in pituitary tumors has been significantly hampered by limited quantities of surgically resected tissue for ex vivo studies, and unavailability of human pituitary tumor cell models. METHODS: To characterize human corticotroph tumors at the cellular level, we employed single cell RNA-sequencing (scRNA-seq) to study 4 surgically resected tumors. We also used microarrays to compare individualized paired consecutive culture passages to understand transcriptional shifts as in vitro cultures lost ACTH secretion. Based on these findings, we then modified our in vitro culture methods to develop sustained ACTH-secreting human corticotroph tumoroid cultures. FINDINGS: scRNA-seq identified 4 major cell populations, namely corticotroph tumor (73.6%), stromal (11.2%), progenitor (8.3%), and immune cells (6.8%). Microarray analysis revealed striking changes in extracellular matrix, cell adhesion and motility-related genes concordant with loss of ACTH secretion during conventional 2D culture. Based on these findings, we subsequently defined a series of crucial culture nutrients and scaffold modifications that provided a more favorable trophic and structural environment that could maintain ACTH secretion in in vitro human corticotroph tumor cultures for up to 4 months. INTERPRETATION: Our human corticotroph tumoroid model is a significant advance in the field of pituitary tumors and will further enable translational research studies to identify critically needed therapies for CD. FUNDING: This work was partly funded by NCI P50-CA211015 and the Warley Trust Foundation.


Assuntos
Adenoma Hipofisário Secretor de ACT/etiologia , Adenoma Hipofisário Secretor de ACT/metabolismo , Adenoma Hipofisário Secretor de ACT/patologia , Biomarcadores , Linhagem Celular Tumoral , Proliferação de Células , Células Cultivadas , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hipersecreção Hipofisária de ACTH/etiologia , Hipersecreção Hipofisária de ACTH/metabolismo , Análise de Célula Única , Esferoides Celulares , Células Tumorais Cultivadas
13.
Can J Neurol Sci ; 48(2): 259-266, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32800010

RESUMO

BACKGROUND: Calcifying pseudoneoplasm of the neuraxis (CAPNON) is a rare tumor-like lesion with unknown pathogenesis. It is likely under-reported due to diagnostic challenges including the nonspecific radiographic features, lack of diagnostic markers, and often asymptomatic nature of the lesions. METHODS: We performed detailed examination of 11 CAPNON specimens diagnosed by histopathology, with the help of electron microscopy and immunohistochemistry. RESULTS: Electron microscopy revealed the presence of fibrillary materials consistent with neurofilaments. In addition to some entrapped axons at the periphery of CAPNONs, we discovered that all specimens stained positive for neurofilament-light (NF-L) within the granular amorphous cores, but not neurofilament-phosphorylated (NF-p). CAPNONs also showed variable infiltration of CD8+ T-cells and a decreased ratio of CD4/CD8+ T-cells, suggesting an immune-mediated process in the pathogenesis of CAPNON. CONCLUSION: NF-L and CD4/CD8 immunostains may serve as diagnostic markers for CAPNON and shed light on its pathogenesis.


Assuntos
Calcinose , Axônios , Linfócitos T CD8-Positivos , Calcinose/diagnóstico por imagem , Sistema Nervoso Central , Humanos , Imuno-Histoquímica
14.
J Clin Endocrinol Metab ; 106(1): e232-e246, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33000123

RESUMO

CONTEXT: Cushing disease (CD) is a life-threatening disorder. Therapeutic goals include symptom relief, biochemical control, and tumor growth inhibition. Current medical therapies for CD by and large exert no action on tumor growth. OBJECTIVE: To identify drugs that inhibit corticotroph tumor adrenocorticotropic hormone (ACTH) secretion and growth. DESIGN: High throughput screen employing a novel "gain of signal" ACTH AlphaLISA assay. SETTING: Academic medical center. PATIENTS: Corticotroph tumor tissues from patients with CD. INTERVENTIONS: None. MAIN OUTCOME MEASURES: Potent inhibitors of corticotroph tumor ACTH secretion and growth. RESULTS: From a kinase inhibitor library, we identified the dual PI3K/HDAC inhibitor CUDC-907 as a potent inhibitor of murine and human corticotroph tumor ACTH secretion (median effective concentration 1-5 nM), and cell proliferation (median inhibitory concentration 5 nM). In an in vivo murine corticotroph tumor xenograft model, orally administered CUDC-907 (300 mg/kg) reduced corticotroph tumor volume (TV [cm3], control 0.17 ± 0.05 vs CUDC-907 0.07 ± 0.02, P < .05) by 65% and suppressed plasma ACTH (ACTH [pg/mL] control 206 ± 27 vs CUDC-907 47 ± 7, P < .05) and corticosterone (corticosterone [ng/mL] control 180 ± 87 vs CUDC-907 27 ± 5, P < .05) levels by 77% and 85% respectively compared with controls. We also demonstrated that CUDC-907 acts through HDAC1/2 inhibition at the proopiomelanocortin transcriptional level combined with its PI3K-mediated inhibition of corticotroph cell viability to reduce ACTH secretion. CONCLUSIONS: Given its potent efficacy in in vitro and in vivo models of CD, combined with proven safety and tolerance in clinical trials, we propose CUDC-907 may be a promising therapy for CD.


Assuntos
Antineoplásicos/uso terapêutico , Morfolinas/uso terapêutico , Hipersecreção Hipofisária de ACTH/tratamento farmacológico , Pirimidinas/uso terapêutico , Adenoma Hipofisário Secretor de ACT/tratamento farmacológico , Adenoma Hipofisário Secretor de ACT/genética , Adenoma Hipofisário Secretor de ACT/metabolismo , Adenoma Hipofisário Secretor de ACT/patologia , Adenoma/tratamento farmacológico , Adenoma/genética , Adenoma/metabolismo , Adenoma/patologia , Hormônio Adrenocorticotrópico/análise , Hormônio Adrenocorticotrópico/metabolismo , Animais , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Corticotrofos/efeitos dos fármacos , Corticotrofos/metabolismo , Corticotrofos/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Camundongos , Camundongos Nus , Terapia de Alvo Molecular/métodos , Morfolinas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Hipersecreção Hipofisária de ACTH/genética , Hipersecreção Hipofisária de ACTH/metabolismo , Hipersecreção Hipofisária de ACTH/patologia , Pirimidinas/farmacologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Sci Rep ; 10(1): 20978, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33262385

RESUMO

Complete surgical resection of abnormal brain tissue is the most important predictor of seizure freedom following surgery for cortical dysplasia. While lesional tissue is often visually indiscernible from normal brain, anecdotally, it is subjectively stiffer. We report the first experience of the use of a digital tonometer to understand the biomechanical properties of epilepsy tissue and to guide the conduct of epilepsy surgery. Consecutive epilepsy surgery patients (n = 24) from UCLA Mattel Children's Hospital were recruited to undergo intraoperative brain tonometry at the time of open craniotomy for epilepsy surgery. Brain stiffness measurements were corrected with abnormalities on neuroimaging and histopathology using mixed-effects multivariable linear regression. We collected 249 measurements across 30 operations involving 24 patients through the pediatric epilepsy surgery program at UCLA Mattel Children's Hospital. On multivariable mixed-effects regression, brain stiffness was significantly associated with the presence of MRI lesion (ß = 32.3, 95%CI 16.3-48.2; p < 0.001), severity of cortical disorganization (ß = 19.8, 95%CI 9.4-30.2; p = 0.001), and recent subdural grid implantation (ß = 42.8, 95%CI 11.8-73.8; p = 0.009). Brain tonometry offers the potential of real-time intraoperative feedback to identify abnormal brain tissue with millimeter spatial resolution. We present the first experience with this novel intraoperative tool for the conduct of epilepsy surgery. A carefully designed prospective study is required to elucidate whether the clinical application of brain tonometry during resective procedures could guide the area of resection and improve seizure outcomes.


Assuntos
Encéfalo/fisiopatologia , Encéfalo/cirurgia , Epilepsia/fisiopatologia , Epilepsia/cirurgia , Manometria/instrumentação , Adolescente , Adulto , Criança , Pré-Escolar , Elasticidade , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Curva ROC , Adulto Jovem
16.
iScience ; 23(10): 101569, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33083736

RESUMO

Recently, lipid metabolism reprogramming has been further evidenced in malignancies via the observation of large amounts of lipid droplets (LDs) in human tumors, including in glioblastoma (GBM), the most lethal primary brain tumor. However, the role played by LDs in tumor cells remains unknown. Here, we show that triglycerides (TG), the major components of LDs, serve as a critical energy reservoir to support GBM cell survival. TG/LDs rapidly diminished in GBM cells upon glucose reduction, whereas inhibiting fatty acid oxidation or autophagy resulted in the accumulation of TG/LDs and strongly potentiated GBM cell death. Immunofluorescence imaging and time-lapse videos showed that LDs are hydrolyzed by autophagy to release free fatty acids that mobilize into mitochondria for energy production. Our study demonstrates that autophagy-mediated hydrolysis of TG/LDs maintains energy homeostasis and GBM survival upon glucose reduction, suggesting that limiting TG/LDs utilization might be necessary upon treating GBM.

17.
J Neurooncol ; 147(3): 599-605, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32274629

RESUMO

PURPOSE: Glioblastoma (GBM) is the most common and malignant primary adult brain tumor. Current care includes surgical resection, radiation, and chemotherapy. Recent clinical trials for GBM have demonstrated extended survival using interventions such as tumor vaccines or tumor-treating fields. However, prognosis generally remains poor, with expected survival of 20 months after randomization. Chemokine-based immunotherapy utilizing CCL21 locally recruits lymphocytes and dendritic cells to enhance host antitumor response. Here, we report a preliminary study utilizing CPZ-vault nanoparticles as a vehicle to package, protect, and steadily deliver therapy to optimize CCL21 therapy in a murine flank model of GBM. METHODS: GL261 cells were subcutaneously injected into the left flank of eight-week-old female C57BL/6 mice. Mice were treated with intratumoral injections of either: (1) CCL21-packaged vault nanoparticles (CPZ-CCL21), (2) free recombinant CCL21 chemokine empty vault nanoparticles, (3) empty vault nanoparticles, or 4) PBS. RESULTS: The results of this study showed that CCL21-packaged vault nanoparticle injections can decrease the tumor volume in vivo. Additionally, this study showed mice injected with CCL21-packaged vault nanoparticle had the smallest average tumor volume and remained the only treatment group with a negative percent change in tumor volume. CONCLUSIONS: This preliminary study establishes vault nanoparticles as a feasible vehicle to increase drug delivery and immune response in a flank murine model of GBM. Future animal studies involving an intracranial orthotopic tumor model are required to fully evaluate the potential for CCL21-packaged vault nanoparticles as a strategy to bypass the blood brain barrier, enhance intracranial immune activity, and improve intracranial tumor control and survival.


Assuntos
Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Quimiocina CCL21/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Glioblastoma/imunologia , Glioblastoma/patologia , Imunoterapia/métodos , Animais , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Quimiocina CCL21/imunologia , Feminino , Glioblastoma/terapia , Camundongos Endogâmicos C57BL , Nanopartículas
18.
Neurooncol Adv ; 2(1): vdaa009, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32118206

RESUMO

BACKGROUND: Targeted next-generation sequencing (NGS) is frequently obtained at the University of California, Los Angeles (UCLA) for clinical characterization of CNS tumors. In this study, we describe the diagnostic reliability of the Foundation Medicine (FM) targeted NGS platform and its ability to explore and identify tumor characteristics of prognostic significance in gliomas. METHODS: Neuro-oncology patients seen at UCLA who have received FM testing between August 2012 and March 2019 were included in this study, and all mutations from FM test reports were recorded. Initial tumor diagnoses and diagnostic markers found via standard clinical methods were obtained from pathology reports. With overall and progression-free survival data, elastic net regularized Cox regression and Cox proportional hazards models were used to determine whether any mutations of unknown significance detected by FM could predict patient outcome in glioblastoma (GBM). RESULTS: Six hundred and three samples tested by FM from 565 distinct patients were identified. Concordance of diagnostic markers was high between standard clinical testing methods and FM. Oligodendroglial markers detected via FM were highly correlated with 1p19q codeletion in IDH mutated gliomas. FM testing of multiple tumor samples from the same patient demonstrated temporal and spatial mutational heterogeneity. Mutations in BCORL1, ERBB4, and PALB2, which are mutations of unknown significance in GBM, were shown to be statistically significant in predicting patient outcome. CONCLUSIONS: In our large cohort, we found that targeted NGS can both reliably and efficiently detect important diagnostic markers in CNS tumors.

20.
J Biol Chem ; 294(51): 19740-19751, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31712311

RESUMO

In cancer, aberrant growth factor receptor signaling reprograms cellular metabolism and global gene transcription to drive aggressive growth, but the underlying mechanisms are not well-understood. Here we show that in the highly lethal brain tumor glioblastoma (GBM), mTOR complex 2 (mTORC2), a critical core component of the growth factor signaling system, couples acetyl-CoA production with nuclear translocation of histone-modifying enzymes including pyruvate dehydrogenase and class IIa histone deacetylases to globally alter histone acetylation. Integrated analyses in orthotopic mouse models and in clinical GBM samples reveal that mTORC2 controls iron metabolisms via histone H3 acetylation of the iron-related gene promoter, promoting tumor cell survival. These results nominate mTORC2 as a critical epigenetic regulator of iron metabolism in cancer.


Assuntos
Neoplasias Encefálicas/metabolismo , Epigênese Genética , Glioblastoma/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Ferro/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica , Histonas/química , Humanos , Proteínas Imediatamente Precoces/metabolismo , Metaboloma , Camundongos , Transplante de Neoplasias , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piruvato Desidrogenase (Lipoamida)/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA