Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Exp Med ; 216(7): 1509-1524, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31142587

RESUMO

The oncogenic c-MYC (MYC) transcription factor has broad effects on gene expression and cell behavior. We show that MYC alters the efficiency and quality of mRNA translation into functional proteins. Specifically, MYC drives the translation of most protein components of the electron transport chain in lymphoma cells, and many of these effects are independent from proliferation. Specific interactions of MYC-sensitive RNA-binding proteins (e.g., SRSF1/RBM42) with 5'UTR sequence motifs mediate many of these changes. Moreover, we observe a striking shift in translation initiation site usage. For example, in low-MYC conditions, lymphoma cells initiate translation of the CD19 mRNA from a site in exon 5. This results in the truncation of all extracellular CD19 domains and facilitates escape from CD19-directed CAR-T cell therapy. Together, our findings reveal MYC effects on the translation of key metabolic enzymes and immune receptors in lymphoma cells.


Assuntos
Linfoma/metabolismo , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas c-myc/fisiologia , RNA Mensageiro/metabolismo , Sítio de Iniciação de Transcrição , Regiões 5' não Traduzidas , Linhagem Celular Tumoral , Humanos , Fases de Leitura Aberta , Proteínas de Ligação a RNA/metabolismo
2.
J Clin Invest ; 127(7): 2555-2568, 2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-28530645

RESUMO

Osteoporosis is a metabolic bone disorder associated with compromised bone strength and an increased risk of fracture. Inhibition of the differentiation of bone-resorbing osteoclasts is an effective strategy for the treatment of osteoporosis. Prior work by our laboratory and others has shown that MYC promotes osteoclastogenesis in vitro, but the underlying mechanisms are not well understood. In addition, the in vivo importance of osteoclast-expressed MYC in physiological and pathological bone loss is not known. Here, we have demonstrated that deletion of Myc in osteoclasts increases bone mass and protects mice from ovariectomy-induced (OVX-induced) osteoporosis. Transcriptomic analysis revealed that MYC drives metabolic reprogramming during osteoclast differentiation and functions as a metabolic switch to an oxidative state. We identified a role for MYC action in the transcriptional induction of estrogen receptor-related receptor α (ERRα), a nuclear receptor that cooperates with the transcription factor nuclear factor of activated T cells, c1 (NFATc1) to drive osteoclastogenesis. Accordingly, pharmacological inhibition of ERRα attenuated OVX-induced bone loss in mice. Our findings highlight a MYC/ERRα pathway that contributes to physiological and pathological bone loss by integrating the MYC/ERRα axis to drive metabolic reprogramming during osteoclast differentiation.


Assuntos
Diferenciação Celular , Osteoclastos/metabolismo , Osteoporose/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptores de Estrogênio/metabolismo , Transdução de Sinais , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Osteoclastos/patologia , Osteoporose/genética , Osteoporose/patologia , Osteoporose/terapia , Proteínas Proto-Oncogênicas c-myc/genética , Receptores de Estrogênio/genética , Transcriptoma , Receptor ERRalfa Relacionado ao Estrogênio
3.
Mol Cell ; 58(2): 203-15, 2015 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-25818647

RESUMO

Acetylation of histones at DNA regulatory elements plays a critical role in transcriptional activation. Histones are also modified by other acyl moieties, including crotonyl, yet the mechanisms that govern acetylation versus crotonylation and the functional consequences of this "choice" remain unclear. We show that the coactivator p300 has both crotonyltransferase and acetyltransferase activities, and that p300-catalyzed histone crotonylation directly stimulates transcription to a greater degree than histone acetylation. Levels of histone crotonylation are regulated by the cellular concentration of crotonyl-CoA, which can be altered through genetic and environmental perturbations. In a cell-based model of transcriptional activation, increasing or decreasing the cellular concentration of crotonyl-CoA leads to enhanced or diminished gene expression, respectively, which correlates with the levels of histone crotonylation flanking the regulatory elements of activated genes. Our findings support a general principle wherein differential histone acylation (i.e., acetylation versus crotonylation) couples cellular metabolism to the regulation of gene expression.


Assuntos
Acil Coenzima A/metabolismo , Proteína p300 Associada a E1A/metabolismo , Histonas/metabolismo , Macrófagos/imunologia , RNA Mensageiro/metabolismo , Ativação Transcricional , Acetato-CoA Ligase/genética , Acetato-CoA Ligase/metabolismo , Acetilação , Acil Coenzima A/genética , Linhagem Celular , Sistema Livre de Células , Proteína p300 Associada a E1A/genética , Células HEK293 , Células HeLa , Humanos , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Dados de Sequência Molecular
4.
Genes Cells ; 12(9): 1075-90, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17825050

RESUMO

The condensin complex is essential for sister chromatid segregation in eukaryotic mitosis. Nevertheless, in budding yeast, condensin mutations result in massive mis-segregation of chromosomes containing the nucleolar organizer, while other chromosomes, which also contain condensin binding sites, remain genetically stable. To investigate this phenomenon we analyzed the mechanism of the cell-cycle arrest elicited by condensin mutations. Under restrictive conditions, the majority of condensin-deficient cells arrest in metaphase. This metaphase arrest is mediated by the spindle checkpoint, particularly by the spindle-kinetochore tension-controlling pathway. Inactivation of the spindle checkpoint in condensin mutants resulted in frequent chromosome non-disjunction, eliminating the bias in chromosome mis-segregation towards rDNA-containing chromosomes. The spindle tension defect in condensin-impaired cells is likely mediated by structural defects in centromere chromatin reflected by the partial loss of the centromere histone Cse4p. These findings show that, in addition to its essential role in rDNA segregation, condensin mediates segregation of the whole genome by maintaining the centromere structure in Saccharomyces cerevisiae.


Assuntos
Adenosina Trifosfatases/metabolismo , Centrômero/fisiologia , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Cinetocoros/fisiologia , Mitose/fisiologia , Complexos Multiproteicos/metabolismo , Troca de Cromátide Irmã/fisiologia , Adenosina Trifosfatases/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA Ribossômico/metabolismo , Proteínas de Ligação a DNA/genética , Modelos Biológicos , Complexos Multiproteicos/genética , Mutação , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Cell Cycle ; 3(7): 960-7, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15190202

RESUMO

The condensin complex is the chief molecular machine of mitotic chromosome condensation. Nucleolar concentration of condensin in mitosis was previously shown to correlate with proficiency of rDNA condensation and segregation. To uncover the mechanisms facilitating this targeting we conducted a screen for mutants that impair mitotic condensin congression to the nucleolus. Mutants in the cdc14, esp1 and cdc5 genes, which encode FEAR-network components, showed the most prominent defects in mitotic condensin localization. We established that Cdc14p activity released by the FEAR pathway was required for proper condensin-to-rDNA targeting in anaphase. The MEN pathway was dispensable for condensin-to-rDNA targeting, however MEN-mediated release of Cdc14p later in anaphase allowed for proper, albeit delayed, condensin targeting to rDNA and successful segregation of nucleolus in the slk19 FEAR mutant. Although condensin was physically dislodged from rDNA in the cdc14 mutant, it was properly assembled, phosphorylated and chromatin-bound, suggesting that condensin was mis-targeted but active. This study identifies a novel pathway promoting condensin targeting to a specific chromosomal address, the rDNA locus.


Assuntos
Adenosina Trifosfatases/metabolismo , Anáfase/fisiologia , Proteínas de Ciclo Celular/metabolismo , Nucléolo Celular/metabolismo , DNA Ribossômico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mitose/fisiologia , Complexos Multiproteicos/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/genética , Proteínas de Ciclo Celular/genética , Nucléolo Celular/genética , Cromatina/genética , Cromatina/metabolismo , DNA Ribossômico/genética , Proteínas de Ligação a DNA/genética , Endopeptidases/genética , Endopeptidases/metabolismo , Marcação de Genes , Complexos Multiproteicos/genética , Mutação/genética , Proteínas Tirosina Fosfatases/genética , Proteínas de Ligação a RNA , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Separase , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA