Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(35): 42080-42093, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37624365

RESUMO

Aerogels with low density, high mechanical strength, and excellent elasticity have a wide potential for applications in wastewater treatment, thermal management, and sensors. However, the fabrication of such aerogels from biomass materials required complex preparation processes. Herein, a sustainable and facile strategy was reported to construct lignin/cellulose aerogels (LCMA) with three-dimensional interconnected structures by introducing homologous lignin with a polyphenyl propane structure as a structural enhancer through a top-down directional freezing approach, prompting a 2036% enhancement in compressive modulus and an 8-12-fold increase in oil absorption capacity. In addition, the hydrophobic aerogels with superelasticity were achieved by combining the aligned polygon-like structure and flexible silane chains, which exhibited remarkable compressional fatigue resistance and superhydrophobicity (WCA = 168°). Attributed to its unique pore design and surface morphology control, the prepared aerogel exhibited excellent performance in immiscible oil-water separation and water-in-oil emulsion separation. Due to the ultra-low density (8.3 mg·cm-3) as well as high porosity (98.87%), the obtained aerogel showed a low thermal conductivity (0.02565 ± 0.0024 W·m-1·K-1), demonstrating a potential in insulation applications. The synthetic strategy and sustainability concept presented in this work could provide guidance for the preparation of advanced biomass-based aerogels with unique properties for a wide range of applications.

2.
Artigo em Inglês | MEDLINE | ID: mdl-35195406

RESUMO

Visible-light-driven organic oxidations carried out under mild conditions offer a sustainable approach to performing chemical transformations important to the chemical industry. This work reports an efficient photocatalytic benzyl alcohol oxidation process using one-dimensional (1D) TiO2 nanorod (NR)-based photoanodes with surface-adsorbed ruthenium polypyridyl photocatalysts at room temperature. The photocatalyst bis(2,2'-bipyridine)(4,4'-dicarboxy-2,2'-bipyridine)Ru(II) (RuC) was covalently anchored onto TiO2 nanorod arrays grown on fluorine-doped tin oxide (FTO) electrode surfaces (FTO|t-TiO2|RuC, t = the thickness of TiO2 NR). Under aerobic conditions, the photophysical and photocatalytic properties of FTO|t-TiO2|RuC (t = 1, 2, or 3.5 µm) photoanodes were investigated in a solution containing a hydrogen atom transfer mediator (4-acetamido-2,2,6,6-tetramethylpiperidine-N-oxyl, ACT) as cocatalyst. Dye-sensitized photoelectrochemical cells (DSPECs) using the FTO|t-TiO2|RuC (t = 1, 2, or 3.5 µm) photoanodes and ACT-containing electrolyte were investigated for carrying out photocatalytic oxidation of a lignin model compound containing a benzylic alcohol functional group. The best-performing anode surface, FTO|1-TiO2|RuC (shortest NR length), oxidized the 2° alcohol of the lignin model compound to the Cα-ketone form with a > 99% yield over a 4 h photocatalytic experiment with a Faradaic efficiency of 88%. The length of TiO2 NR arrays (TiO2 NRAs) on the FTO substrate influenced the photocatalytic performance with longer NRAs underperforming compared to the shorter arrays. The influence of the NR length is hypothesized to affect the homogeneity of the RuC coating and accessibility of the ACT mediator to the RuC-coated TiO2 surface. The efficient photocatalytic alcohol oxidation with visible light at room temperature as demonstrated in this study is important to the development of sustainable approaches for lignin depolymerization and biomass conversion.

3.
ACS Omega ; 4(14): 16103-16110, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31592478

RESUMO

Contributing to recent lignin valorization efforts, this study uses an integrative approach to explore the effects of fractionation parameters on lignin characteristics. The following reaction parameters are explored: water content of the water-organic solvent mixture, reaction temperature, and sulfuric acid content. Ethylene glycol (EG) was selected as the fractionation solvent because of its promising lignin solubility and extractability. This study takes a novel approach in conducting EG-assisted biomass fractionation; instead of removing lignin from the biomass, lignin was extracted and characterized. Lignin characteristics involving recovery and linkages were analyzed. A maximum of 27 wt % lignin recovery was achieved at a low water content (25%) and high reaction temperature (180 °C) in the presence of sulfuric acid (1 wt %). From NMR analysis, aryl-ether linkages, which are important to preserve for lignin valorization, were decomposed as a result of relatively high temperature and the presence of sulfuric acid. Statistical analysis showed that all individual parameters and their interactions had significant effects on lignin recovery. Computational analysis revealed that hydrogen bonding between the EG and lignin macromolecules greatly decreased with an increasing amount of water.

4.
Front Plant Sci ; 10: 1774, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32082342

RESUMO

The complex and heterogeneous polyphenolic structure of lignin confers recalcitrance to plant cell walls and challenges biomass processing for agroindustrial applications. Recently, significant efforts have been made to alter lignin composition to overcome its inherent intractability. In this work, to overcome technical difficulties related to biomass recalcitrance, we report an integrated strategy combining biomass genetic engineering with a pretreatment using a bio-derived deep eutectic solvent (DES). In particular, we employed biomass from an Arabidopsis line that expressed a bacterial hydroxycinnamoyl-CoA hydratase-lyase (HCHL) in lignifying tissues, which results in the accumulation of unusual C6C1 lignin monomers and a slight decrease in lignin molecular weight. The transgenic biomass was pretreated with renewable DES that can be synthesized from lignin-derived phenols. Biomass from the HCHL plant line containing C6C1 monomers showed increased pretreatment efficiency and released more fermentable sugars up to 34% compared to WT biomass. The enhanced biomass saccharification of the HCHL line is likely due to a reduction of lignin recalcitrance caused by the overproduction of C6C1 aromatics that act as degree of polymerization (DP) reducers and higher chemical reactivity of lignin structures with such C6C1 aromatics. Overall, our findings demonstrate that strategic plant genetic engineering, along with renewable DES pretreatment, could enable the development of sustainable biorefinery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA