Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Neuro Oncol ; 26(9): 1602-1616, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38853689

RESUMO

BACKGROUND: The FDA approval of oncolytic herpes simplex-1 virus (oHSV) therapy underscores its therapeutic promise and safety as a cancer immunotherapy. Despite this promise, the current efficacy of oHSV is significantly limited to a small subset of patients largely due to the resistance in tumor and tumor microenvironment (TME). METHODS: RNA sequencing (RNA-Seq) was used to identify molecular targets of oHSV resistance. Intracranial human and murine glioma or breast cancer brain metastasis (BCBM) tumor-bearing mouse models were employed to elucidate the mechanism underlying oHSV therapy-induced resistance. RESULTS: Transcriptome analysis identified IGF2 as one of the top-secreted proteins following oHSV treatment. Moreover, IGF2 expression was significantly upregulated in 10 out of 14 recurrent GBM patients after treatment with oHSV, rQNestin34.5v.2 (71.4%; P = .0020) (ClinicalTrials.gov, NCT03152318). Depletion of IGF2 substantially enhanced oHSV-mediated tumor cell killing in vitro and improved survival of mice bearing BCBM tumors in vivo. To mitigate the oHSV-induced IGF2 in the TME, we constructed a novel oHSV, oHSV-D11mt, secreting a modified IGF2R domain 11 (IGF2RD11mt) that acts as IGF2 decoy receptor. Selective blocking of IGF2 by IGF2RD11mt significantly increased cytotoxicity, reduced oHSV-induced neutrophils/PMN-MDSCs infiltration, and reduced secretion of immune suppressive/proangiogenic cytokines, while increased CD8 + cytotoxic T lymphocytes (CTLs) infiltration, leading to enhanced survival in GBM or BCBM tumor-bearing mice. CONCLUSIONS: This is the first study reporting that oHSV-induced secreted IGF2 exerts a critical role in resistance to oHSV therapy, which can be overcome by oHSV-D11mt as a promising therapeutic advance for enhanced viro-immunotherapy.


Assuntos
Neoplasias Encefálicas , Imunoterapia , Fator de Crescimento Insulin-Like II , Terapia Viral Oncolítica , Microambiente Tumoral , Animais , Feminino , Humanos , Camundongos , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Glioblastoma/patologia , Glioblastoma/terapia , Glioblastoma/metabolismo , Glioblastoma/imunologia , Glioma/patologia , Glioma/terapia , Glioma/imunologia , Glioma/metabolismo , Herpesvirus Humano 1 , Imunoterapia/métodos , Fator de Crescimento Insulin-Like II/metabolismo , Fator de Crescimento Insulin-Like II/antagonistas & inibidores , Fator de Crescimento Insulin-Like II/genética , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos , Células Tumorais Cultivadas , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Medicina (Kaunas) ; 60(2)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38399602

RESUMO

Background and Objectives: Local infiltration analgesia (LIA) represents a potential approach to reducing pain in patients undergoing total hip arthroplasty (THA). The pericapsular nerve group (PENG) block also provides adequate analgesia for fractures and THA. As most hip surgeries use a lateral incision, affecting the cutaneous supply by branches of the lateral femoral cutaneous nerve (LFCN), the LFCN block can contribute to postoperative analgesia. However, no studies have investigated the effectiveness of supplemental PENG block combined with LFCN block in patients undergoing LIA after hip fracture surgery. Our study aimed to assess the effectiveness of PENG combined with LFCN block following hip fracture surgery in patients who underwent LIA. Materials and Methods: Forty-six patients were randomly assigned to LIA or PENG + LFCN + LIA groups. The primary outcome was the pain score at rest and during movement at 2, 6, 12, 24, and 48 h postoperatively. The total opioid dose for postoperative analgesia was also measured at the same time points. Secondary outcomes included postoperative cognitive function assessment. Results: The median pain scores at rest and during movement were lower in the PENG + LFCN + LIA group throughout the study periods compared to the LIA group, except at 2 h (at rest) and 48 h (during movement) after surgery. The total fentanyl dose was lower in the PENG + LFCN + LIA group at all time points after surgery when compared to the LIA group. Postoperative delirium incidence and the median abbreviated mental test scores were not significantly different between the two groups. Conclusions: The combination of PENG and LFCN blocks may contribute to enhanced recovery for patients undergoing LIA after hip fracture surgery. However, further well-controlled research is necessary to determine the effectiveness of supplemental PENG combined with LFCN block in addressing cognitive deficits in these patients.


Assuntos
Analgesia , Fraturas do Quadril , Bloqueio Nervoso , Humanos , Nervo Femoral , Estudos Prospectivos , Dor Pós-Operatória/tratamento farmacológico , Dor Pós-Operatória/prevenção & controle , Dor Pós-Operatória/etiologia , Bloqueio Nervoso/efeitos adversos , Fraturas do Quadril/cirurgia , Fraturas do Quadril/complicações , Ultrassonografia de Intervenção
3.
J Clin Med ; 12(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37892748

RESUMO

Dexmedetomidine prevents postoperative cognitive dysfunction by inhibiting high-mobility group box 1 (HMGB1), which acts as an inflammatory marker. This study investigated the HMGB1 levels and the cognitive function using a Mini-Cog© score in elderly patients undergoing orthopedic surgery with dexmedetomidine infusion. In total, 128 patients aged ≥ 65 years were analyzed. The patients received saline in the control group and dexmedetomidine in the dexmedetomidine group until the end of surgery. Blood sampling and the Mini-Cog© test were performed before the surgery and on postoperative days 1 and 3. The primary outcomes were the effect of dexmedetomidine on the HMGB1 levels and the Mini-Cog© score in terms of postoperative cognitive function. The Mini-Cog© score over time differed significantly between the groups (p = 0.008), with an increase in the dexmedetomidine group. The postoperative HMGB1 levels increased over time in both groups; however, there was no significant difference between the groups (p = 0.969). The probability of perioperative neurocognitive disorders decreased by 0.48 times as the Mini-Cog© score on postoperative day 3 increased by 1 point. Intraoperative dexmedetomidine has shown an increase in the postoperative Mini-Cog© score. Thus, the Mini-Cog© score is a potential tool for evaluating cognitive function in elderly patients.

4.
FASEB J ; 36(9): e22482, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35947136

RESUMO

Hepatocellular carcinoma (HCC) is a leading cause of cancer deaths, and the most common primary liver malignancy to present in the clinic. With the exception of liver transplant, treatment options for advanced HCC are limited, but improved tumor stratification could open the door to new treatment options. Previously, we demonstrated that the circadian regulator Aryl Hydrocarbon-Like Receptor Like 1 (ARNTL, or Bmal1) and the liver-enriched nuclear factor 4 alpha (HNF4α) are robustly co-expressed in healthy liver but incompatible in the context of HCC. Faulty circadian expression of HNF4α- either by isoform switching, or loss of expression- results in an increased risk for HCC, while BMAL1 gain-of-function in HNF4α-positive HCC results in apoptosis and tumor regression. We hypothesize that the transcriptional programs of HNF4α and BMAL1 are antagonistic in liver disease and HCC. Here, we study this antagonism by generating a mouse model with inducible loss of hepatic HNF4α and BMAL1 expression. The results reveal that simultaneous loss of HNF4α and BMAL1 is protective against fatty liver and HCC in carcinogen-induced liver injury and in the "STAM" model of liver disease. Furthermore, our results suggest that targeting Bmal1 expression in the absence of HNF4α inhibits HCC growth and progression. Specifically, pharmacological suppression of Bmal1 in HNF4α-deficient, BMAL1-positive HCC with REV-ERB agonist SR9009 impairs tumor cell proliferation and migration in a REV-ERB-dependent manner, while having no effect on healthy hepatocytes. Collectively, our results suggest that stratification of HCC based on HNF4α and BMAL1 expression may provide a new perspective on HCC properties and potential targeted therapeutics.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Carcinogênese/genética , Carcinogênese/patologia , Carcinoma Hepatocelular/metabolismo , Transformação Celular Neoplásica/patologia , Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Camundongos
5.
Medicine (Baltimore) ; 101(27): e29684, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35801750

RESUMO

BACKGROUND: Lumbar transforaminal epidural steroid injections are used widely to alleviate low back radicular pain, but it requires real-time fluoroscopy, which can increase the risk of radiation exposure. Anteroposterior or lateral real-time fluoroscopy can be used during lumbar transforaminal epidural steroid injections, but there have been no comparative studies on the exposure of physicians to radiation from anteroposterior or lateral real-time fluoroscopy. The aim of this study was to compare the cumulative radiation exposure to each body part of the physician according to the method of real-time fluoroscopy when performing lumbar transforaminal epidural steroid injections. METHODS: A single physician performed lumbar transforaminal epidural steroid injections, and 2 groups of patients were formed based on the method used: group A (anteroposterior real-time fluoroscopy) and group L (lateral real-time fluoroscopy). Dosimeters were placed outside the chest, inside the chest, outside the thyroid collar, inside the thyroid collar, outside the groin, inside the groin, outside the lead gloves, and left rim of the glasses. RESULTS: A total of 200 lumbar transforaminal epidural steroid injections were analyzed, and the radiation exposure was measured by cumulative dose equivalents in mSv. The dose equivalents were lower at every level in group A compared with group L except for outside the groin. CONCLUSIONS: The cumulative radiation exposure at all the measurement sites was lower for anteroposterior real-time fluoroscopy compared with lateral real-time fluoroscopy when performing lumbar transforaminal epidural steroid injections, except for outside the groin.


Assuntos
Dor Lombar , Médicos , Exposição à Radiação , Fluoroscopia/métodos , Humanos , Injeções Epidurais/métodos , Dor Lombar/tratamento farmacológico , Vértebras Lombares/diagnóstico por imagem , Esteroides
6.
Cell Death Dis ; 13(4): 374, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440077

RESUMO

Triple-negative breast cancer (TNBC) is a heterogeneous disease characterized by poor response to standard therapies and therefore unfavorable clinical outcomes. Better understanding of TNBC and new therapeutic strategies are urgently needed. ROR nuclear receptors are multifunctional transcription factors with important roles in circadian pathways and other processes including immunity and tumorigenesis. Nobiletin (NOB) is a natural compound known to display anticancer effects, and our previous studies showed that NOB activates RORs to enhance circadian rhythms and promote physiological fitness in mice. Here, we identified several TNBC cell lines being sensitive to NOB, by itself or in combination. Cell and xenograft experiments showed that NOB significantly inhibited TNBC cell proliferation and motility in vitro and in vivo. ROR loss- and gain-of-function studies showed concordant effects of the NOB-ROR axis on MDA-MB-231 cell growth. Mechanistically, we found that NOB activates ROR binding to the ROR response elements (RRE) of the IκBα promoter, and NOB strongly inhibited p65 nuclear translocation. Consistent with transcriptomic analysis indicating cancer and NF-κB signaling as major pathways altered by NOB, p65-inducible expression abolished NOB effects, illustrating a requisite role of NF-κB suppression mediating the anti-TNBC effect of NOB. Finally, in vivo mouse xenograft studies showed that NOB enhanced the antitumor efficacy in mammary fat pad implanted TNBC, as a single agent or in combination with the chemotherapy agent Docetaxel. Together, our study highlights an anti-TNBC mechanism of ROR-NOB via suppression of NF-κB signaling, suggesting novel preventive and chemotherapeutic strategies against this devastating disease.


Assuntos
Flavonas , Neoplasias de Mama Triplo Negativas , Animais , Linhagem Celular Tumoral , Proliferação de Células , Flavonas/farmacologia , Flavonas/uso terapêutico , Humanos , Quinase I-kappa B/metabolismo , Camundongos , NF-kappa B/metabolismo , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Neuron ; 108(1): 164-179.e7, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32768389

RESUMO

The suprachiasmatic nucleus (SCN) acts as a master pacemaker driving circadian behavior and physiology. Although the SCN is small, it is composed of many cell types, making it difficult to study the roles of particular cells. Here we develop bioluminescent circadian reporter mice that are Cre dependent, allowing the circadian properties of genetically defined populations of cells to be studied in real time. Using a Color-Switch PER2::LUCIFERASE reporter that switches from red PER2::LUCIFERASE to green PER2::LUCIFERASE upon Cre recombination, we assess circadian rhythms in two of the major classes of peptidergic neurons in the SCN: AVP (arginine vasopressin) and VIP (vasoactive intestinal polypeptide). Surprisingly, we find that circadian function in AVP neurons, not VIP neurons, is essential for autonomous network synchrony of the SCN and stability of circadian rhythmicity.


Assuntos
Arginina Vasopressina/metabolismo , Ritmo Circadiano , Rede Nervosa/metabolismo , Proteínas Circadianas Period/genética , Neurônios do Núcleo Supraquiasmático/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Fatores de Transcrição ARNTL/genética , Animais , Técnicas de Inativação de Genes , Luciferases , Camundongos , Camundongos Transgênicos , Proteínas Circadianas Period/metabolismo , Análise de Célula Única , Núcleo Supraquiasmático/metabolismo , Imagem com Lapso de Tempo
8.
Genes Dev ; 34(17-18): 1177-1189, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32792353

RESUMO

Dysregulation of the ubiquitin-proteasomal system (UPS) enables pathogenic accumulation of disease-driving proteins in neurons across a host of neurological disorders. However, whether and how the UPS contributes to oligodendrocyte dysfunction and repair after white matter injury (WMI) remains undefined. Here we show that the E3 ligase VHL interacts with Daam2 and their mutual antagonism regulates oligodendrocyte differentiation during development. Using proteomic analysis of the Daam2-VHL complex coupled with conditional genetic knockout mouse models, we further discovered that the E3 ubiquitin ligase Nedd4 is required for developmental myelination through stabilization of VHL via K63-linked ubiquitination. Furthermore, studies in mouse demyelination models and white matter lesions from patients with multiple sclerosis corroborate the function of this pathway during remyelination after WMI. Overall, these studies provide evidence that a signaling axis involving key UPS components contributes to oligodendrocyte development and repair and reveal a new role for Nedd4 in glial biology.


Assuntos
Diferenciação Celular , Proteínas dos Microfilamentos/metabolismo , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Regeneração Nervosa/genética , Doenças do Sistema Nervoso/genética , Oligodendroglia/fisiologia , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Camundongos Knockout , Esclerose Múltipla/fisiopatologia , Bainha de Mielina/genética , Doenças do Sistema Nervoso/fisiopatologia , Oligodendroglia/citologia , Estabilidade Proteica , Ubiquitinação/genética
9.
Medicine (Baltimore) ; 99(31): e21424, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32756146

RESUMO

BACKGROUND: Spine interventionists frequently employ fluoroscopy to guide injection procedures. The increase in fluoroscopically guided procedures in recent years has led to a growing concern about radiation exposure. A new method of covering the C-arm tube with a lead apron has been suggested to reduce radiation exposure. This study aimed to compare the radiation exposure when performing lumbar transforaminal epidural steroid injections (TFESIs) using this new method to a control group. METHODS: A total of 200 patients who underwent lumbar TFESIs by a single physician were recruited. Patients were divided into 2 groups, the new method group (group A) and the control group (group C), and the amount of radiation exposure was compared. The dosimetry badge locations were marked as outside of apron, inside of apron, outside of thyroid collar, inside of thyroid collar, ring, and glasses. RESULTS: The cumulative dose equivalents of all the measurement sites were reduced in group A compared with group C, and the most reduced site was inside the thyroid collar. CONCLUSIONS: Covering the C-arm tube with a lead apron can be effective in reducing the cumulative radiation exposure when performing fluoroscopically guided TFESIs.


Assuntos
Fluoroscopia/efeitos adversos , Injeções Epidurais , Exposição Ocupacional/prevenção & controle , Médicos , Roupa de Proteção , Exposição à Radiação/prevenção & controle , Corticosteroides/administração & dosagem , Feminino , Humanos , Vértebras Lombares , Masculino , Pessoa de Meia-Idade , Radiografia Intervencionista/efeitos adversos
10.
Sci Rep ; 10(1): 13844, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796949

RESUMO

Growing evidence demonstrates circadian rhythms of pain hypersensitivity in various chronic disorders. In chemotherapy-induced peripheral neuropathy (CIPN), agents such as paclitaxel are known to elicit chronic neuropathic pain in cancer patients and seriously compromise their quality of life. Here, we report that the mechanical threshold for allodynia in paclitaxel-treated rats exhibited a robust circadian oscillation, reaching the nadir during the daytime (inactive phase). Using Per2::LucSV circadian reporter mice expressing a PER2::LUC fusion protein, we isolated dorsal root ganglia (DRG), the primary sensory cell body for peripheral nerve injury generated hypersensitivity, and monitored ex vivo reporter bioluminescence. We observed strong circadian reporter rhythms in DRG neurons which are highly entrainable by external cues. Paclitaxel treatment significantly lengthened DRG circadian periods, with little effects on the amplitude of oscillation. We further observed the core protein BMAL1 and PER2 in DRG neurons and satellite cells. Using DRG and dorsal horn (DH; another key structure for CIPN pain response) tissues from vehicle and paclitaxel treated rats, we performed RNA-sequencing and identified diurnal expression of core clock genes as well as clock-controlled genes in both sites. Interestingly, 20.1% and 30.4% of diurnal differentially expressed genes (DEGs) overlapped with paclitaxel-induced DEGs in the DRG and the DH respectively. In contrast, paclitaxel-induced DEGs displayed only a modest overlap between daytime and nighttime (Zeitgeber Time 8 and 20). Furthermore, paclitaxel treatment induced de novo diurnal DEGs, suggesting reciprocal interaction of circadian rhythms and chemotherapy. Our study therefore demonstrates a circadian oscillation of CIPN and its underlying transcriptomic landscape.


Assuntos
Antineoplásicos Fitogênicos/efeitos adversos , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Gânglios Espinais/fisiologia , Neuralgia/etiologia , Neuralgia/fisiopatologia , Paclitaxel/efeitos adversos , Fatores de Transcrição ARNTL , Animais , Ritmo Circadiano/efeitos dos fármacos , Modelos Animais de Doenças , Expressão Gênica , Técnicas In Vitro , Camundongos , Proteínas Circadianas Period , Traumatismos dos Nervos Periféricos , Ratos , Corno Dorsal da Medula Espinal/fisiologia
11.
Anesthesiology ; 132(4): 763-780, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31794514

RESUMO

BACKGROUND: During myocardial ischemia, hypoxia-inducible factors are stabilized and provide protection from ischemia and reperfusion injury. Recent studies show that myocyte-specific hypoxia-inducible factor 2A promotes myocardial ischemia tolerance through induction of epidermal growth factor, amphiregulin. Here, the authors hypothesized that hypoxia-inducible factor 2A may enhance epidermal growth factor receptor 1 (ERBB1) expression in the myocardium that could interface between growth factors and its effect on providing tolerance to ischemia and reperfusion injury. METHODS: Human myocardial tissues were obtained from ischemic heart disease patients and normal control patients to compare ERBB1 expression. Myocyte-specific Hif2a or ErbB1 knockout mice were generated to observe the effect of Hif2a knockdown in regulating ERBB1 expression and to examine the role of ERBB1 during myocardial ischemia and reperfusion injury. RESULTS: Initial studies of myocardial tissues from patients with ischemic heart disease showed increased ERBB1 protein (1.12 ± 0.24 vs. 13.01 ± 2.20, P < 0.001). In contrast, ERBB1 transcript was unchanged. Studies using short hairpin RNA repression of Hif2A or Hif2a Myosin Cre+ mice directly implicated hypoxia-inducible factor 2A in ERBB1 protein induction during hypoxia or after myocardial ischemia, respectively. Repression of RNA-binding protein 4 abolished hypoxia-inducible factor 2A-dependent induction of ERBB1 protein. Moreover, ErbB1 Myosin Cre+ mice experienced larger infarct sizes (22.46 ± 4.06 vs. 46.14 ± 1.81, P < 0.001) and could not be rescued via amphiregulin treatment. CONCLUSIONS: These findings suggest that hypoxia-inducible factor 2A promotes transcription-independent induction of ERBB1 protein and implicates epidermal growth factor signaling in protection from myocardial ischemia and reperfusion injury.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Receptores ErbB/biossíntese , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Transcrição Gênica/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Receptores ErbB/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Traumatismo por Reperfusão Miocárdica/genética , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo
12.
J Neurosci ; 39(40): 7958-7967, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31420455

RESUMO

The transcription factor, myocyte enhancer factor-2 (MEF2), is required for normal circadian behavior in Drosophila; however, its role in the mammalian circadian system has not been established. Of the four mammalian Mef2 genes, Mef2d is highly expressed in the suprachiasmatic nucleus (SCN) of the hypothalamus, a region critical for coordinating peripheral circadian clocks. Using both conventional and brain-specific Mef2d KO (Mef2d-/-) mouse lines, we demonstrate that MEF2D is essential for maintaining the length of the circadian free-running period of locomotor activity and normal sleep patterns in male mice. Crossing Mef2d-/- with Per2::luc reporter mice, we show that these behavioral changes are achieved without altering the endogenous period of the master circadian oscillator in the SCN. Together, our data suggest that alterations in behavior in Mef2d-/- mice may be the result of an effect on SCN output, rather than an effect on timekeeping within the SCN itself. These findings add to the growing body of evidence that MEF2 proteins play important roles in the brain.SIGNIFICANCE STATEMENT These studies are the first to show a role for MEF2 proteins in the brain outside of the hippocampus, and our findings suggest that these proteins may play diverse roles in the CNS. It is important to continue to build on our understanding of the roles of proteins acting in the SCN because SCN dysfunction underlies jet lag in humans and influences the response to shift work schedules, which are now known as risk factors for the development of cancer. Our work on MEF2D could be the basis for opening new lines of research in the development and regulation of circadian rhythms.


Assuntos
Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Sono/genética , Sono/fisiologia , Animais , Comportamento Animal , Proteínas CLOCK/biossíntese , Proteínas CLOCK/genética , Luz , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/fisiologia , RNA/biossíntese , RNA/genética , Transtornos do Sono-Vigília/genética , Transtornos do Sono-Vigília/psicologia , Núcleo Supraquiasmático/fisiologia
13.
FASEB J ; 33(9): 10528-10537, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31260634

RESUMO

The circadian clock is important for cellular and organ function. However, its function in sickle cell disease (SCD), a life-threatening hemolytic disorder, remains unknown. Here, we performed an unbiased microarray screen, which revealed significantly altered expression of circadian rhythmic genes, inflammatory response genes, and iron metabolic genes in SCD Berkeley transgenic mouse lungs compared with controls. Given the vital role of period 2 (Per2) in the core clock and the unrecognized role of Per2 in SCD, we transplanted the bone marrow (BM) of SCD mice to Per2Luciferase mice, which revealed that Per2 expression was up-regulated in SCD mouse lung. Next, we transplanted the BM of SCD mice to period 1 (Per1)/Per2 double deficient [Per1/Per2 double knockout (dKO)] and wild-type mice, respectively. We discovered that Per1/Per2 dKO mice transplanted with SCD BM (SCD → Per1/Per2 dKO) displayed severe irradiation sensitivity and were more susceptible to an early death. Although we observed an increase of peripheral inflammatory cells, we did not detect differences in erythrocyte sickling. However, there was further lung damage due to elevated pulmonary congestion, inflammatory cell infiltration, iron overload, and secretion of IL-6 in lavage fluid. Overall, we demonstrate that Per1/Per2 is beneficial to counteract elevated systemic inflammation, lung tissue inflammation, and iron overload in SCD.-Adebiyi, M. G., Zhao, Z., Ye, Y., Manalo, J., Hong, Y., Lee, C. C., Xian, W., McKeon, F., Culp-Hill, R., D' Alessandro, A., Kellems, R. E., Yoo, S.-H., Han, L., Xia, Y. Circadian period 2: a missing beneficial factor in sickle cell disease by lowering pulmonary inflammation, iron overload, and mortality.


Assuntos
Anemia Falciforme/mortalidade , Relógios Circadianos , Ritmo Circadiano/genética , Sobrecarga de Ferro/mortalidade , Proteínas Circadianas Period/fisiologia , Pneumonia/mortalidade , Anemia Falciforme/genética , Anemia Falciforme/terapia , Animais , Transplante de Medula Óssea , Perfilação da Expressão Gênica , Sobrecarga de Ferro/genética , Sobrecarga de Ferro/terapia , Camundongos , Camundongos Knockout , Pneumonia/genética , Pneumonia/terapia
14.
Nat Commun ; 9(1): 4349, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30341289

RESUMO

Hepatocyte nuclear factor 4 alpha (HNF4α) is a master regulator of liver-specific gene expression with potent tumor suppressor activity, yet many liver tumors express HNF4α. This study reveals that P1-HNF4α, the predominant isoform expressed in the adult liver, inhibits expression of tumor promoting genes in a circadian manner. In contrast, an additional isoform of HNF4α, driven by an alternative promoter (P2-HNF4α), is induced in HNF4α-positive human hepatocellular carcinoma (HCC). P2-HNF4α represses the circadian clock gene ARNTL (BMAL1), which is robustly expressed in healthy hepatocytes, and causes nuclear to cytoplasmic re-localization of P1-HNF4α. We reveal mechanisms underlying the incompatibility of BMAL1 and P2-HNF4α in HCC, and demonstrate that forced expression of BMAL1 in HNF4α-positive HCC prevents the growth of tumors in vivo. These data suggest that manipulation of the circadian clock in HNF4α-positive HCC could be a tractable strategy to inhibit tumor growth and progression in the liver.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Carcinoma Hepatocelular/metabolismo , Fator 4 Nuclear de Hepatócito/fisiologia , Neoplasias Hepáticas/metabolismo , Fatores de Transcrição ARNTL/genética , Transporte Ativo do Núcleo Celular , Carcinoma Hepatocelular/patologia , Relógios Circadianos , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Hepatócitos/metabolismo , Neoplasias Hepáticas/patologia , Isoformas de Proteínas/fisiologia
15.
Cell Syst ; 6(3): 314-328.e2, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29525205

RESUMO

Cancer chronotherapy, treatment at specific times during circadian rhythms, endeavors to optimize anti-tumor effects and to lower toxicity. However, comprehensive characterization of clock genes and their clinical relevance in cancer is lacking. We systematically characterized the alterations of clock genes across 32 cancer types by analyzing data from The Cancer Genome Atlas, Cancer Therapeutics Response Portal, and The Genomics of Drug Sensitivity in Cancer databases. Expression alterations of clock genes are associated with key oncogenic pathways, patient survival, tumor stage, and subtype in multiple cancer types. Correlations between expression of clock genes and of other genes in the genome were altered in cancerous versus normal tissues. We identified interactions between clock genes and clinically actionable genes by analyzing co-expression, protein-protein interaction, and chromatin immunoprecipitation sequencing data and also found that clock gene expression is correlated to anti-cancer drug sensitivity in cancer cell lines. Our study provides a comprehensive analysis of the circadian clock across different cancer types and highlights potential clinical utility of cancer chronotherapy.


Assuntos
Cronoterapia/métodos , Relógios Circadianos/genética , Neoplasias/genética , Relógios Circadianos/fisiologia , Ritmo Circadiano , Genômica , Humanos , Farmacogenética/métodos
16.
J Natl Cancer Inst ; 110(4): 379-389, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29106591

RESUMO

Background: Alternative polyadenylation (APA) is emerging as a major post-transcriptional mechanism for gene regulation, and dysregulation of APA contributes to several human diseases. However, the functional consequences of APA in human cancer are not fully understood. Particularly, there is no large-scale analysis in cancer cell lines. Methods: We characterized the global APA profiles of 6398 patient samples across 17 cancer types from The Cancer Genome Atlas and 739 cancer cell lines from the Cancer Cell Line Encyclopedia. We built a linear regression model to explore the correlation between APA factors and APA events across different cancer types. We used Spearman correlation to assess the effects of APA events on drug sensitivity and the Wilcoxon rank-sum test or Cox proportional hazards model to identify clinically relevant APA events. Results: We revealed a striking global 3'UTR shortening in cancer cell lines compared with tumor samples. Our analysis further suggested PABPN1 as the master regulator in regulating APA profile across different cancer types. Furthermore, we showed that APA events could affect drug sensitivity, especially of drugs targeting chromatin modifiers. Finally, we identified 1971 clinically relevant APA events, as well as alterations of APA in clinically actionable genes, suggesting that analysis of the complexity of APA profiles could have clinical utility. Conclusions: Our study highlights important roles for APA in human cancer, including reshaping cellular pathways and regulating specific gene expression, exemplifying the complex interplay between APA and other biological processes and yielding new insights into the action mechanism of cancer drugs.


Assuntos
Regiões 3' não Traduzidas , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Proteína I de Ligação a Poli(A)/genética , Poliadenilação , RNA Mensageiro/genética , Seguimentos , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias/patologia , Prognóstico , Células Tumorais Cultivadas
17.
Medicine (Baltimore) ; 96(45): e8629, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29137098

RESUMO

RATIONALE: Cancer-related neuropathic pain often responds poorly to standard pain treatments. Scrambler therapy has relieved refractory chronic pain in several uncontrolled clinical trials. PATIENT CONCERNS: An 11-year-old female patient was suffering from left groin and medial thigh pain after irradiation to the knee. The girl was diagnosed with precursor B-cell lymphoblastic leukemia 2 years ago. Extramedullary relapse of leukemia developed 1 month ago and pain had started. She was treated with oral medications, but she was continuously complaining of severe pain. DIAGNOSIS: Neuropathic pain caused by obturator nerve involvement in leukemia. INTERVENTION: Scrambler therapy. OUTCOME: Pain reduction. LESSONS: Scrambler therapy is noninvasive, is not associated with any complications, causes minimal discomfort during treatment, and is very effective in a pediatric patient with cancer-related neuropathic pain.


Assuntos
Dor do Câncer/etiologia , Dor do Câncer/terapia , Terapia por Estimulação Elétrica , Leucemia/complicações , Neuralgia/etiologia , Neuralgia/terapia , Dor do Câncer/diagnóstico por imagem , Criança , Feminino , Virilha/diagnóstico por imagem , Humanos , Perna (Membro)/diagnóstico por imagem , Leucemia/diagnóstico por imagem , Leucemia/terapia , Neuralgia/diagnóstico por imagem
18.
Elife ; 62017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-29053101

RESUMO

Von Hippel-Landau (VHL) protein is a potent tumor suppressor regulating numerous pathways that drive cancer, but mutations in VHL are restricted to limited subsets of malignancies. Here we identified a novel mechanism for VHL suppression in tumors that do not have inactivating mutations. Using developmental processes to uncover new pathways contributing to tumorigenesis, we found that Daam2 promotes glioma formation. Protein expression screening identified an inverse correlation between Daam2 and VHL expression across a host of cancers, including glioma. These in silico insights guided corroborating functional studies, which revealed that Daam2 promotes tumorigenesis by suppressing VHL expression. Furthermore, biochemical analyses demonstrate that Daam2 associates with VHL and facilitates its ubiquitination and degradation. Together, these studies are the first to define an upstream mechanism regulating VHL suppression in cancer and describe the role of Daam2 in tumorigenesis.


Assuntos
Carcinogênese , Glioma/fisiopatologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Humanos , Proteínas dos Microfilamentos , Ligação Proteica , Proteólise , Ubiquitinação , Proteínas rho de Ligação ao GTP
19.
Int J Oncol ; 47(5): 1783-92, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26351876

RESUMO

Previous studies reported that a Gamitrinib variant containing triphenylphosphonium (G-TPP) binds to mitochondrial Hsp90 and rapidly inhibits its activity to induce apoptosis. We investigated the mechanisms underlying the antitumor activity of G-TPP in Hep3B hepatocellular carcinoma cells. Contrary to our predictions, we observed mitochondrial elongation in the G-TPP-treated Hep3B cells undergoing apoptosis. We found that the G-TPP-induced mitochondrial elongation in Hep3B cells was caused by a decrease in the mitochondrial fission-regulating protein Drp1 rather than by changes in the mitochondrial fusion machinery proteins Mfn1 and Opa1. Furthermore, G-TPP induced G2-M phase cell cycle arrest by reducing the interaction between CDK1 and cyclin B1. Additionally, reactive oxygen species (ROS) played a pivotal role in G-TPP-induced cell death and mitochondrial elongation in Hep3B cells, and these processes are mediated by the reduced association of CDK1 with cyclin B1 and the suppressed phosphorylation of Drp1 (Ser616). Thus, G-TPP induces cell death and causes Drp1-mediated mitochondrial elongation in Hep3B cells by increasing the ROS level.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Proteínas de Choque Térmico HSP90/genética , Neoplasias Hepáticas/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Proteína Quinase CDC2 , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Ciclina B1/metabolismo , Quinases Ciclina-Dependentes/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Guanidinas/uso terapêutico , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Lactamas Macrocíclicas/uso terapêutico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Dinâmica Mitocondrial/efeitos dos fármacos , Dinâmica Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Compostos Organofosforados/administração & dosagem
20.
Cancer Lett ; 355(1): 61-9, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25218348

RESUMO

Previous studies have revealed that HBx expression has anti-apoptotic effects, resulting in increased drug resistance in HCC cells. Thus, we examined if sorafenib efficiently induces apoptosis in HBx-overexpressing HCC cells. Noticeably, sorafenib efficiently induced apoptosis, even in HBx-expressing HepG2 cells, indicating that the HBx protein does not attenuate sorafenib-induced apoptosis. We next investigated if sorafenib modulates autophagy, allowing HCC cells to overcome the chemoresistance conferred by the HBx protein. Although autophagy plays a cytoprotective role against sorafenib-induced lethality, sorafenib was effective irrespective of HBx protein overexpression. We next examined if sorafenib exerts its cytotoxic effect via direct effects on the HBx protein. Importantly, sorafenib decreased HBx protein stability through a proteasome-dependent degradation pathway. Moreover, sorafenib decreased HBV gene expression and viral promoter activity. Taken together, sorafenib efficiently induces apoptotic cell death in HBx-expressing HCC cells via the downregulation of the HBx protein, a key factor in the anti-cancer drug resistance observed in HBV-induced HCC.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/virologia , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Etoposídeo/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Neoplasias Hepáticas/virologia , Niacinamida/análogos & derivados , Compostos de Fenilureia/farmacologia , Transativadores/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Relação Dose-Resposta a Droga , Regulação para Baixo , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Humanos , Interferon-alfa/farmacologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Niacinamida/farmacologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Sorafenibe , Transativadores/genética , Transfecção , Proteínas Virais Reguladoras e Acessórias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA